Stichprobenmittel

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Stichprobenmittelwert)
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt das Stichprobenmittel als Schätzfunktion. Für das Stichprobenmittel von Zahlenwerten siehe arithmetisches Mittel

Das Stichprobenmittel, auch als Stichprobenmittelwert[1], arithmetischer Mittelwert[2] oder arithmetisches Mittel[3] bezeichnet, ist eine spezielle Schätzfunktion in der mathematische Statistik. Es spielt eine wichtige Rolle bei der Schätzung des Erwartungswertes von unbekannten Wahrscheinlichkeitsverteilungen und tritt auch bei der Konstruktion von Konfidenzintervallen und statistischen Tests auf.

Sein empirisches Pendant ist der empirische Mittelwert. Er entspricht einer Realisierung des Stichprobenmittels.

Definition[Bearbeiten | Quelltext bearbeiten]

Seien unabhängig identisch verteilte Zufallsvariablen. Dann ist das Stichprobenmittel definiert als[4]

.

Teils wird noch die Anzahl der Zufallsvariablen als Index mitnotiert, insbesondere bei Grenzwertbetrachtungen. Das Stichprobenmittel wird dann als notiert.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Das Stichprobenmittel ist das erste Stichprobenmoment und damit Erwartungswert der empirischen Verteilung. Daraus folgt direkt, dass es sich bei dem Stichprobenmittel um den Momentenschätzer für den Erwartungswert handelt. Für eine Herleitung siehe Momentenmethode#Schätzung des Erwartungswertes.

Der so gewonnene Schätzer ist erwartungstreu und damit unverzerrt. Dies folgt direkt aus der Linearität des Erwartungswertes, denn es ist

,

was genau dem Erwartungswert des zugrundeliegenden Wahrscheinlichkeitssmaßes entspricht. Des Weiteren ist das Stichprobenmittel aufgrund des zentralen Grenzwertsatzes stets asymptotisch normalverteilt und nach dem starken Gesetz der großen Zahlen auch stark konsistent.

Weiter gilt .

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 99, doi:10.1007/978-3-642-45387-8.
  2. Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 5, doi:10.1007/978-3-642-17261-8.
  3. Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 26, doi:10.1007/978-3-642-17261-8.
  4. Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 246, doi:10.1007/978-3-642-45387-8.