„Xenobiologie“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[ungesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Zahlreiche neue Tipp- und Rechtschreibfehler ausgebessert
Zeile 5: Zeile 5:


== Ziele der Xenobiologie ==
== Ziele der Xenobiologie ==
Die Xenobiologie hat das Potenzial, fundamentale Prinzipien der Biologie und Wissen über den [[Chemische Evolution|Ursprung des Lebens]] aufzudecken. Um ihn besser zu verstehen, ist es wichtig, herauszufinden, warum sich das Leben (höchstwahrscheinlich) über die frühe [[RNA-Welt]] zu einem DNA-RNA-Protein-System mit einem universellen genetischen Code entwickelt hat.<ref>{{Literatur | Autor = Norman R. Pace | Titel = The universal nature of biochemistry | Sammelwerk = Proceedings of the National Academy of Sciences | Band = 98 | Jahr = 2001 | Datum = 2001-01-30| Nummer = 3| Seiten = 805–808| DOI= 10.1073/pnas.98.3.805| PMID = 11158550}}</ref> In diesem Zusammenhang stehen die Fragen, ob das Leben ein evolutiver „Zufall“ war oder ob bestimmte selektive Zwänge existierten, die eine andere [[Chemische Evolution|Biochemie des Lebens]] von Anfang an ausschlossen. Durch das Erzeugen alternativer biochemischer „[[Ursuppe]]n“ wird erwartet, fundamentale Prinzipien zu ergründen, die zur Entwicklung des Lebens, wie wir es heute kennen, beigetragen haben.
Die Xenobiologie hat das Potenzial, fundamentale Prinzipien der Biologie und Wissen über den [[Chemische Evolution|Ursprung des Lebens]] aufzudecken. Um diesen besser zu verstehen, ist es wichtig, herauszufinden, warum sich das Leben (höchstwahrscheinlich) über die frühe [[RNA-Welt]] zu einem DNA-RNA-Protein-System mit einem universellen genetischen Code entwickelt hat.<ref>{{Literatur | Autor = Norman R. Pace | Titel = The universal nature of biochemistry | Sammelwerk = Proceedings of the National Academy of Sciences | Band = 98 | Jahr = 2001 | Datum = 2001-01-30| Nummer = 3| Seiten = 805–808| DOI= 10.1073/pnas.98.3.805| PMID = 11158550}}</ref> In diesem Zusammenhang stehen die Fragen, ob das Leben ein evolutiver „Zufall“ war oder ob bestimmte selektive Zwänge existierten, die eine andere [[Chemische Evolution|Biochemie des Lebens]] von Anfang an ausschlossen. Durch das Erzeugen alternativer biochemischer „[[Ursuppe]]n“ wird erwartet, fundamentale Prinzipien zu ergründen, die zur Entwicklung des Lebens, wie wir es heute kennen, beigetragen haben.


Abseits von der Grundlagenforschung bietet die Xenobiologie zahlreiche neue Ansätze zur Entwicklung industrieller Produktionssysteme, mit denen neuartige Herstellungsmöglichkeiten im Bereich des ''Biopolymer Engineerings'' und der ''Pathogenresistenzen'' geschaffen werden. Der genetische Code kodiert in allen Organismen 20 kanonische Aminosäuren, die zur [[Proteinbiosynthese]] verwendet werden. In seltenen Fällen werden auch die speziellen Aminosäuren Selenomethionin, Selenocystein und Pyrrolysin durch zusätzliche Translationskomponenten in Proteine eingebaut.<ref>{{Literatur | Autor = Birgit Wiltschi, Nediljko Budisa | Titel = Natural history and experimental evolution of the genetic code | Sammelwerk = Applied Microbiology and Biotechnology | Band = 74 | Jahr = 2007 | Datum = 2007-03-01| Nummer = 4| Seiten = 739–753| DOI= 10.1007/s00253-006-0823-6}}</ref> Es gibt jedoch 700 weitere Aminosäuren, die in der Biochemie bekannt sind und deren Eigenschaften man Nutzen könnte, um das Potential von Proteinen im Hinblick auf effizientere katalytische Funktionen oder Materialeigenschaften zu verbessern. Das EU-geförderte Projekt [[METACODE]] beispielsweise verfolgt das Ziel, die Metathese&nbsp;- ein nützlicher katalytischer Vorgang, der in lebenden Organismen bisher unbekannt ist&nbsp;- in Bakterienzellen zu etablieren. Weiteres Potential für die Verbesserung von Produktionsprozessen durch die XB liegt in der Möglichkeit, das Risiko von Viren- oder Bakteriophagenbefall während der Kultivierung zu minimieren. Xenobiologische Zellen eigneten sich nicht mehr als Wirte für Viren und Phagen, da sie durch eine sogenannte ''„semantische Eindämmung“'' eine höhere Resistenz aufweisen.
Abseits von der Grundlagenforschung bietet die Xenobiologie zahlreiche neue Ansätze zur Entwicklung industrieller Produktionssysteme, mit denen neuartige Herstellungsmöglichkeiten im Bereich des ''Biopolymer Engineerings'' und der ''Pathogenresistenzen'' geschaffen werden. Der genetische Code kodiert in allen Organismen 20 kanonische Aminosäuren, die zur [[Proteinbiosynthese]] verwendet werden. In seltenen Fällen werden auch die speziellen Aminosäuren [[Selenomethionin]], [[Selenocystein]] und [[Pyrrolysin]] durch zusätzliche Translationskomponenten in Proteine eingebaut.<ref>{{Literatur | Autor = Birgit Wiltschi, Nediljko Budisa | Titel = Natural history and experimental evolution of the genetic code | Sammelwerk = Applied Microbiology and Biotechnology | Band = 74 | Jahr = 2007 | Datum = 2007-03-01| Nummer = 4| Seiten = 739–753| DOI= 10.1007/s00253-006-0823-6}}</ref> Es gibt jedoch 700 weitere Aminosäuren, die in der Biochemie bekannt sind und deren Eigenschaften man Nutzen könnte, um das Potential von Proteinen im Hinblick auf effizientere katalytische Funktionen oder Materialeigenschaften zu verbessern. Das EU-geförderte Projekt [[METACODE]] beispielsweise verfolgt das Ziel, die Metathese&nbsp;- ein nützlicher katalytischer Vorgang, der in lebenden Organismen bisher unbekannt ist&nbsp;- in Bakterienzellen zu etablieren. Weiteres Potential für die Verbesserung von Produktionsprozessen durch die XB liegt in der Möglichkeit, das Risiko von Viren- oder Bakteriophagenbefall während der Kultivierung zu minimieren. Xenobiologische Zellen eigneten sich nicht mehr als Wirte für Viren und Phagen, da sie durch eine sogenannte ''„semantische Eindämmung“'' eine höhere Resistenz aufweisen.


Xenobiologie ermöglicht die Entwicklung neuartiger Systeme der Eindämmung genetisch modifizierter Organismen (Biocontainment). Dabei wird das Ziel verfolgt, mit einer „genetischen Firewall“ derzeitige Eindämmungsansätze zu verstärken und zu diversifizieren. Ein vielfach angeführter Kritikpunkt an der tranditionellen Gentechnik und Biotechnologie ist die Möglichkeit des horizontalen Gentransfers von gentechnisch veränderten Organismen in die Umwelt und daraus entstehende potentielle Risiken für die Natur und die menschliche Gesundheit. Eine der Hauptideen der XB ist es nun, alternative genetische Codes und biochemische Grundbausteine zu entwickeln, sodass ein horizontaler Gentransfer nicht länger möglich ist. Eine veränderte Biochemie würde neue synthetische [[Auxotrophie]]n ermöglichen und diese nutzen, um orthogonale biologische Systeme zu erzeugen, die nicht länger kompatibel mit den natürlichen genetischen Systemen sind.<ref>{{Literatur | Autor = Piet Herdewijn, Philippe Marlière | Titel = Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids | Sammelwerk = Chemistry & Biodiversity | Band = 6 | Jahr = 2009 | Datum = 2009| Nummer = 6| Seiten = 791–808| DOI= 10.1002/cbdv.200900083}}</ref>
Xenobiologie ermöglicht die Entwicklung neuartiger Systeme der Eindämmung genetisch modifizierter Organismen (Biocontainment). Dabei wird das Ziel verfolgt, mit einer „genetischen Firewall“ derzeitige Eindämmungsansätze zu verstärken und zu diversifizieren. Ein vielfach angeführter Kritikpunkt an der tranditionellen Gentechnik und Biotechnologie ist die Möglichkeit des horizontalen Gentransfers von gentechnisch veränderten Organismen in die Umwelt und daraus entstehende potentielle Risiken für die Natur und die menschliche Gesundheit. Eine der Hauptideen der XB ist es nun, alternative genetische Codes und biochemische Grundbausteine zu entwickeln, sodass ein horizontaler Gentransfer nicht länger möglich ist. Eine veränderte Biochemie würde neue synthetische [[Auxotrophie]]n ermöglichen und diese nutzen, um orthogonale biologische Systeme zu erzeugen, die nicht länger kompatibel mit den natürlichen genetischen Systemen sind.<ref>{{Literatur | Autor = Piet Herdewijn, Philippe Marlière | Titel = Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids | Sammelwerk = Chemistry & Biodiversity | Band = 6 | Jahr = 2009 | Datum = 2009| Nummer = 6| Seiten = 791–808| DOI= 10.1002/cbdv.200900083}}</ref>


== Wissenschaftlicher Ansatz ==
== Wissenschaftlicher Ansatz ==
Die Xenobiologie verfolgt das Ziel, biologische Systeme zu konstruieren und herzustellen, die sich von ihren natürlichen Vorlagen auf einer oder mehreren fundamentalen Ebenen unterscheiden. Im Idealfall wären diese neuartigen Lebewesen in jedem möglichen biochemischen Aspekt unterschiedlich und enthielten einen sehr stark abgeändert genetischen Code. Das Langzeitziel ist es, eine Zelle zu entwickeln, die ihre genetische Information nicht mehr in DNA speichert und mit 20 Aminosäuren übersetzt, sondern in alternativen Informationsträger-Polymeren, die aus XNA, alternativer Basenpaarung und nichtkanonischen Aminosäuren (d.&nbsp;h. einem veränderten genetischen Code) bestehen. Bislang gelang es nur, Zellen zu erzeugen, die eine oder zwei der genannten Eigenschaften implementiert hatten.
Die Xenobiologie verfolgt das Ziel, biologische Systeme zu konstruieren und herzustellen, die sich von ihren natürlichen Vorlagen auf einer oder mehreren fundamentalen Ebenen unterscheiden. Im Idealfall wären diese neuartigen Lebewesen in jedem möglichen biochemischen Aspekt unterschiedlich und enthielten einen sehr stark abgeänderten genetischen Code. Das Langzeitziel ist es, eine Zelle zu entwickeln, die ihre genetische Information nicht mehr in DNA speichert und mit 20 Aminosäuren übersetzt, sondern in alternativen Informationsträger-Polymeren, die aus XNA, alternativer Basenpaarung und nichtkanonischen Aminosäuren (d.&nbsp;h. einem veränderten genetischen Code) bestehen. Bislang gelang es nur, Zellen zu erzeugen, die eine oder zwei der genannten Eigenschaften implementiert hatten.


=== Xenonukleinsäuren (XNA) ===
=== Xenonukleinsäuren (XNA) ===
Zeile 25: Zeile 25:


=== Erweiterung des genetischen Codes ===
=== Erweiterung des genetischen Codes ===
Eines der Ziele der Xenobiologie ist die Neugestaltung des [[Genetischer Code|universellen genetischen Codes]]. Der derzeit vielversprechendste Ansatz zum erreichen dieses Zieles ist die Neubesetzung von seltenen oder sogar unbenutzten Codons.<ref>{{Literatur | Autor = Nediljko Budisa | Titel = Engineering the genetic code: expanding the amino acid repertoire for the design of novel proteins | Ort = Weinheim | Verlag = Wiley-VCH | Jahr = 2005 | ISBN = 3527312439 Seite =<!--?-->}}</ref> Im Idealfall entstünden dadurch "Leerstellen" im derzitigen Code, welche mit neuen, [[Nichtkanonische Aminosäure|nichtkanonischen Aminosäure]](ncAA) neu besetzt werden können ("''Expansion des genetischen Codes''", engl. {{lang|en|''code expansion''}}).
Eines der Ziele der Xenobiologie ist die Neugestaltung des [[Genetischer Code|universellen genetischen Codes]]. Der derzeit vielversprechendste Ansatz zum Erreichen dieses Zieles ist die Neubesetzung von seltenen oder sogar unbenutzten Codons.<ref>{{Literatur | Autor = Nediljko Budisa | Titel = Engineering the genetic code: expanding the amino acid repertoire for the design of novel proteins | Ort = Weinheim | Verlag = Wiley-VCH | Jahr = 2005 | ISBN = 3527312439 Seite =<!--?-->}}</ref> Im Idealfall entstünden dadurch „Leerstellen“ im derzeitigen Code, die mit neuen, [[Nichtkanonische Aminosäure|nichtkanonischen Aminosäuren]] (ncAA) neu besetzt werden können (''„Expansion des genetischen Codes“'', engl. {{lang|en|''code expansion''}}).


Da derartige Strategien sehr schwer zu implementieren sind und viel Zeit erfordern, können kurzfristig auch Abkürzungen genommen werden. So werden beim "Engineering des genetischen Codes" (engl. {{lang|en|''code engineering''}}), beispielsweise, Bakterien, die bestimmte Aminosäuren nicht selbst herstellen können, unter bestimmten Kulturbedingungen isostrukturelle Analoga der natürlichen Aminosäuren angeboten, die sie dann statt den natürlichen Aminosäuen in Proteine einbauen. Bei dieser Methode wird jedoch nur eine kanonische Aminosäure durch eine nichtkanonische ersetzt und es kommt strenggenommen nicht zu einer "Erweiterung" des genetischen Codes. Auf diese Weise ist es jedoch leicht möglich, mehrere nichkanonische Aminosäuren gleichzeitig in Proteine einzubauen.<ref>{{Literatur | Autor = Michael Georg Hoesl, Nediljko Budisa | Titel = Recent advances in genetic code engineering in Escherichia coli | Sammelwerk = Current opinion in biotechnology | Band = 23 | Jahr = 2012 | Datum = 2012-10| Nummer = 5| Seiten = 751–757| DOI= 10.1016/j.copbio.2011.12.027| PMID = 22237016}}</ref> Das Aminosäurereportoire kann jedoch nicht nur erweitert sondern auch reduziert werden.<ref>{{Literatur | Autor = V. Pezo u. a. | Titel = A Metabolic Prototype for Eliminating Tryptophan From The Genetic Code | Sammelwerk = Scientific Reports | Band = 3 | Jahr = 2013 | Datum = 2013-02-28| DOI= 10.1038/srep01359}}</ref>
Da derartige Strategien sehr schwer zu implementieren sind und viel Zeit erfordern, können kurzfristig auch Abkürzungen genommen werden. So werden beim „Engineering des genetischen Codes“ (engl. {{lang|en|''code engineering''}}) beispielsweise Bakterien, die bestimmte Aminosäuren nicht selbst herstellen können, unter bestimmten Kulturbedingungen isostrukturelle Analoga der natürlichen Aminosäuren angeboten, die sie dann statt der natürlichen Aminosäuren in Proteine einbauen. Bei dieser Methode wird jedoch nur eine kanonische Aminosäure durch eine nichtkanonische ersetzt und es kommt strenggenommen nicht zu einer „Erweiterung“ des genetischen Codes. Auf diese Weise ist es jedoch leicht möglich, mehrere nichkanonische Aminosäuren gleichzeitig in Proteine einzubauen.<ref>{{Literatur | Autor = Michael Georg Hoesl, Nediljko Budisa | Titel = Recent advances in genetic code engineering in Escherichia coli | Sammelwerk = Current opinion in biotechnology | Band = 23 | Jahr = 2012 | Datum = 2012-10| Nummer = 5| Seiten = 751–757| DOI= 10.1016/j.copbio.2011.12.027| PMID = 22237016}}</ref> Das Aminosäurereportoire kann jedoch nicht nur erweitert sondern auch reduziert werden.<ref>{{Literatur | Autor = V. Pezo u. a. | Titel = A Metabolic Prototype for Eliminating Tryptophan From The Genetic Code | Sammelwerk = Scientific Reports | Band = 3 | Jahr = 2013 | Datum = 2013-02-28| DOI= 10.1038/srep01359}}</ref>
Die Codonspezifität kann geändert werden, indem neue [[tRNA]]/Aminoacyl-tRNA-Synthetasepaare so modifiziert, dass sie andere Codons erkennen. Zellen mit solch neuer Konfiguration sind dann in der Lage, mRNA Sequenzen zu entziffern, die für die natürliche Proteinbiosynthesemaschinerie unbrauchbar wären.<ref>{{Literatur | Autor = Oliver Rackham, Jason W. Chin | Titel = A network of orthogonal ribosome·mRNA pairs | Sammelwerk = Nature Chemical Biology | Band = 1 | Jahr = 2005 | Datum = 2005-08| Nummer = 3| Seiten = 159–166| DOI= 10.1038/nchembio719}}</ref>
Die Codonspezifität kann geändert werden, indem neue [[tRNA]]/Aminoacyl-tRNA-Synthetasepaare so modifiziert werden, dass sie andere Codons erkennen. Zellen mit solch neuer Konfiguration sind dann in der Lage, mRNA-Sequenzen zu entziffern, die für die natürliche Proteinbiosynthesemaschinerie unbrauchbar wären.<ref>{{Literatur | Autor = Oliver Rackham, Jason W. Chin | Titel = A network of orthogonal ribosome·mRNA pairs | Sammelwerk = Nature Chemical Biology | Band = 1 | Jahr = 2005 | Datum = 2005-08| Nummer = 3| Seiten = 159–166| DOI= 10.1038/nchembio719}}</ref>
Neuartige tRNAs/Aminoacyl-tRNA-Synthetasepaare können darauf aufbauend auch für den ortsspezifischen in vivo Einbau von nichtkanonischen Aminosäuren herangezogen werden. <ref>{{Literatur | Autor = Lei Wang, Ansgar Brock, Brad Herberich, Peter G. Schultz | Titel = Expanding the Genetic Code of Escherichia coli | Sammelwerk = Science | Band = 292 | Jahr = 2001 | Datum = 2001-04-20| Nummer = 5516| Seiten = 498–500| DOI= 10.1126/science.1060077| PMID = 11313494}}</ref><ref>{{Literatur | Autor = Matthew C. T. Hartman, Kristopher Josephson, Chi-Wang Lin, Jack W. Szostak | Titel = An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides | Sammelwerk = PLoS ONE | Band = 2 | Jahr = 2007 | Datum = 2007-10-03| Nummer = 10| Seiten = e972| DOI= 10.1371/journal.pone.0000972}}</ref>
Neuartige tRNAs/Aminoacyl-tRNA-Synthetasepaare können darauf aufbauend auch für den ortsspezifischen in-vivo-Einbau von nichtkanonischen Aminosäuren herangezogen werden.<ref>{{Literatur | Autor = Lei Wang, Ansgar Brock, Brad Herberich, Peter G. Schultz | Titel = Expanding the Genetic Code of Escherichia coli | Sammelwerk = Science | Band = 292 | Jahr = 2001 | Datum = 2001-04-20| Nummer = 5516| Seiten = 498–500| DOI= 10.1126/science.1060077| PMID = 11313494}}</ref><ref>{{Literatur | Autor = Matthew C. T. Hartman, Kristopher Josephson, Chi-Wang Lin, Jack W. Szostak | Titel = An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides | Sammelwerk = PLoS ONE | Band = 2 | Jahr = 2007 | Datum = 2007-10-03| Nummer = 10| Seiten = e972| DOI= 10.1371/journal.pone.0000972}}</ref>
In der Vergangenheit geschah die Neuordnung von Codons hauptsächlich nur in einem sehr limitierten Rahmen. Im Jahr 2013 jedoch wurde zum ersten Mal ein komplettes Codon aus einem Genom entfernt, dass nun frei für die Belegung mit neuen Aminosäuren ist. Konkret konnten die Gruppen um Farren Isaac und Georg Church an der Harvard Universität alle 314 TAG-Stoppcodons im Genom von ''E. Coli'' durch TAA-Stoppcodons ersetzen, wobei sie demonstrierten, dass ein massiver Austausch von einzelnen Codons durch andere letale Effekte für den jeweiligen Organismus möglich ist.<ref>{{Literatur | Autor = Farren J. Isaacs u. a. | Titel = Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement | Sammelwerk = Science | Band = 333 | Jahr = 2011 | Datum = 2011-07-15| Nummer = 6040| Seiten = 348–353| DOI= 10.1126/science.1205822| PMID = 21764749}}</ref> Aufbauend auf diesem Erfolg des genomweiten Codonaustausches, konnten die Arbeitsgruppen 13 Codons in 42 essentiellen Genen durch deren Synonyme ersetzen und so in diesen Genen den genetischen code von 64 auf 51 verwendete Codons verringen.<ref>{{Literatur | Autor = M. J. Lajoie, S. Kosuri, J. A. Mosberg, C. J. Gregg, D. Zhang, G. M. Church | Titel = Probing the Limits of Genetic Recoding in Essential Genes | Sammelwerk = Science | Band = 342 | Jahr = 2013 | Datum = 2013-10-18| Nummer = 6156| Seiten = 361–363| DOI= 10.1126/science.1241460| PMID = 24136967}}</ref>
In der Vergangenheit geschah die Neuordnung von Codons hauptsächlich nur in einem sehr limitierten Rahmen. Im Jahr 2013 jedoch wurde zum ersten Mal ein komplettes Codon aus einem Genom entfernt, das nun frei für die Belegung mit neuen Aminosäuren ist. Konkret konnten die Gruppen um Farren Isaac und Georg Church an der Harvard Universität alle 314 TAG-Stoppcodons im Genom von ''E.&nbsp;Coli'' durch TAA-Stoppcodons ersetzen, wobei sie demonstrierten, dass ein massiver Austausch von einzelnen Codons durch andere letale Effekte für den jeweiligen Organismus möglich ist.<ref>{{Literatur | Autor = Farren J. Isaacs u. a. | Titel = Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement | Sammelwerk = Science | Band = 333 | Jahr = 2011 | Datum = 2011-07-15| Nummer = 6040| Seiten = 348–353| DOI= 10.1126/science.1205822| PMID = 21764749}}</ref> Aufbauend auf diesem Erfolg des genomweiten Codonaustausches, konnten die Arbeitsgruppen 13 Codons in 42 essentiellen Genen durch deren Synonyme ersetzen und so in diesen Genen den genetischen code von 64 auf 51 verwendete Codons verringen.<ref>{{Literatur | Autor = M. J. Lajoie, S. Kosuri, J. A. Mosberg, C. J. Gregg, D. Zhang, G. M. Church | Titel = Probing the Limits of Genetic Recoding in Essential Genes | Sammelwerk = Science | Band = 342 | Jahr = 2013 | Datum = 2013-10-18| Nummer = 6156| Seiten = 361–363| DOI= 10.1126/science.1241460| PMID = 24136967}}</ref>


Ein noch radikalerer Schritt zur Veränderung des genetischen Codes ist der Übergang weg von dem natürlichem Triplett-Codons und hin zu Quadruplett oder sogar Pentaplett-Codons. Masahiko Sisido und Schultz leisteten auf diesem Gebiet Pionierarbeit, wobei Sisido<ref>{{Literatur | Autor = Takahiro Hohsaka, Masahiko Sisido | Titel = Incorporation of non-natural amino acids into proteins | Sammelwerk = Current Opinion in Chemical Biology | Band = 6 | Jahr = 2002 | Datum = 2002-12-01| Nummer = 6| Seiten = 809–815| DOI= 10.1016/S1367-5931(02)00376-9}}</ref> es schaffte in einem zellfreien System einen pentablen Code zu etablieren und Schultz<ref>{{Literatur | Autor = J. Christopher Anderson, Ning Wu, Stephen W. Santoro, Vishva Lakshman, David S. King, Peter G. Schultz | Titel = An expanded genetic code with a functional quadruplet codon | Sammelwerk = Proceedings of the National Academy of Sciences of the United States of America | Band = 101 | Jahr = 2004 | Datum = 2004-05-18| Nummer = 20| Seiten = 7566–7571| DOI= 10.1073/pnas.0401517101| PMID = 15138302}}</ref> sogar Bakterien dazu brachte mit Quadruplett-Codons zu arbeiten. Letztendlich ist es möglich sogar die oben erwähnten nichtnatürliche Nukleobasen (XNA) zu nutzen, um nichtkanonische Aminosäuren in Proteine einzubringen.<ref>{{Literatur | Autor = Ichiro Hirao u. a. | Titel = An unnatural base pair for incorporating amino acid analogs into proteins | Sammelwerk = Nature Biotechnology | Band = 20 | Jahr = 2002 | Datum = 2002-02| Nummer = 2| Seiten = 177–182| DOI= 10.1038/nbt0202-177}}</ref>
Ein noch radikalerer Schritt zur Veränderung des genetischen Codes ist der Übergang weg von den natürlichem Triplett-Codons und hin zu Quadruplett- oder sogar Pentaplett-Codons. Masahiko Sisido und Schultz leisteten auf diesem Gebiet Pionierarbeit, wobei Sisido<ref>{{Literatur | Autor = Takahiro Hohsaka, Masahiko Sisido | Titel = Incorporation of non-natural amino acids into proteins | Sammelwerk = Current Opinion in Chemical Biology | Band = 6 | Jahr = 2002 | Datum = 2002-12-01| Nummer = 6| Seiten = 809–815| DOI= 10.1016/S1367-5931(02)00376-9}}</ref> es schaffte, in einem zellfreien System einen pentablen Code zu etablieren und Schultz<ref>{{Literatur | Autor = J. Christopher Anderson, Ning Wu, Stephen W. Santoro, Vishva Lakshman, David S. King, Peter G. Schultz | Titel = An expanded genetic code with a functional quadruplet codon | Sammelwerk = Proceedings of the National Academy of Sciences of the United States of America | Band = 101 | Jahr = 2004 | Datum = 2004-05-18| Nummer = 20| Seiten = 7566–7571| DOI= 10.1073/pnas.0401517101| PMID = 15138302}}</ref> sogar Bakterien dazu brachte, mit Quadruplett-Codons zu arbeiten. Letztendlich ist es möglich, sogar die oben erwähnten nichtnatürliche Nukleobasen (XNA) zu nutzen, um nichtkanonische Aminosäuren in Proteine einzubringen.<ref>{{Literatur | Autor = Ichiro Hirao u. a. | Titel = An unnatural base pair for incorporating amino acid analogs into proteins | Sammelwerk = Nature Biotechnology | Band = 20 | Jahr = 2002 | Datum = 2002-02| Nummer = 2| Seiten = 177–182| DOI= 10.1038/nbt0202-177}}</ref>


=== Gezielte Evolution ===
=== Gezielte Evolution ===
Eine weitere Möglichkeit, DNA durch XNA zu ersetzen, wäre es, anstatt der genetischen Moleküle gezielt die Zellumgebung zu verändern. Dieser Ansatz wurde bereits erfolgreich von Marliere und Mutzel demonstriert, indem sie einen neuen E.-coli-Stamm herstellten, der über eine DNA-Struktur verfügt, die sich aus den Standardnukleotiden A, C und G sowie aus einem synthetischen Thyminanalogon zusammensetzt. Dabei wurde das Thyminanalogon 5-chlorouracil sequenzspezifisch an alle Positionen des natürlichen Thymins ins Genom eingebaut. Um zu wachsen sind diese Zellen von der externen Zugabe der Base 5-Chlorouracil abhängig, verhalten sich aber ansonsten wie normale E.-coli-Bakterien. Mit diesem Ansatz entstehen zwei Schutzebenen, um jegliche zwischen nichtnatürlichen und natürlichen Bakterien zu verhindern, da der Stamm über eine Auxotrophie für eine nichtnatürliche chemische Substanz besitzt und der Organismus ebenfalls eine DNA-Form hat, die von keinen anderen Organismen entschlüsselt werden kann.<ref>{{Literatur | Autor = Philippe Marlière u. a. | Titel = Chemical Evolution of a Bacterium’s Genome | Sammelwerk = Angewandte Chemie International Edition | Band = 50 | Jahr = 2011 | Datum = 2011| Nummer = 31| Seiten = 7109–7114| DOI= 10.1002/anie.201100535}}</ref>
Eine weitere Möglichkeit, DNA durch XNA zu ersetzen, wäre es, anstatt der genetischen Moleküle gezielt die Zellumgebung zu verändern. Dieser Ansatz wurde bereits erfolgreich von Marliere und Mutzel demonstriert, indem sie einen neuen E.-coli-Stamm herstellten, der über eine DNA-Struktur verfügt, die sich aus den Standardnukleotiden A, C und G sowie aus einem synthetischen Thyminanalogon zusammensetzt. Dabei wurde das Thyminanalogon 5-chlorouracil sequenzspezifisch an alle Positionen des natürlichen Thymins ins Genom eingebaut. Um zu wachsen sind diese Zellen von der externen Zugabe der Base 5-Chlorouracil abhängig, verhalten sich aber ansonsten wie normale E.-coli-Bakterien. Mit diesem Ansatz entstehen zwei Schutzebenen, um jegliche Interaktion zwischen nichtnatürlichen und natürlichen Bakterien zu verhindern, da der Stamm über eine Auxotrophie für eine nichtnatürliche chemische Substanz besitzt und der Organismus ebenfalls eine DNA-Form hat, die von keinen anderen Organismen entschlüsselt werden kann.<ref>{{Literatur | Autor = Philippe Marlière u. a. | Titel = Chemical Evolution of a Bacterium’s Genome | Sammelwerk = Angewandte Chemie International Edition | Band = 50 | Jahr = 2011 | Datum = 2011| Nummer = 31| Seiten = 7109–7114| DOI= 10.1002/anie.201100535}}</ref>


== Biologische Sicherheit ==
== Biologische Sicherheit ==
Xenobiologische Systeme wurden entwickelt, um orthogonal zu den natürlichen biologischen Systemen unseren Planeten zu sein. Ein (jedoch bisher rein hypothetischer) XNA-Organismus<ref>{{Literatur | Autor = Piet Herdewijn, Philippe Marlière | Titel = Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids | Sammelwerk = Chemistry & Biodiversity | Band = 6 | Jahr = 2009 | Datum = 2009-00-00| Nummer = 6| Seiten = 791–808| DOI= 10.1002/cbdv.200900083}}</ref>, der XNA, andere Basenpaare und neue Polymerasen besitzt sowie einen veränderten genetischen Code verwendet, wird nur sehr schwer in der Lage sein, mit der natürlichen Formen des Lebens auf genetischer Ebene zu interagieren. In diesem Sinne repräsentierten xenobiologische Organismen eine genetische Enklave, die genetische Informationen mit natürlichen Zellen nicht austauschen kann.<ref>{{Literatur | Autor = Philippe Marliere | Titel = The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world | Sammelwerk = Systems and Synthetic Biology | Band = 3 | Jahr = 2009 | Datum = 2009-12-01| Nummer = 1–4| Seiten = 77–84| DOI= 10.1007/s11693-009-9040-9}}</ref> Die Veränderung der genetischen Replikationsmaschine einer Zelle führt daher zu einer sogenannten "semantischen Eindämmung". Als Sicherheitskonzept kann diese -in Analogie zur Informationsverarbeitung im IT-Bereich&nbsp;– als eine genetische Firewall bezeichnet werden.<ref>{{Literatur | Autor = Markus Schmidt | Titel = Xenobiology: A new form of life as the ultimate biosafety tool | Sammelwerk = BioEssays | Band = 32 | Jahr = 2010 | Datum = 2010-00-00| Nummer = 4| Seiten = 322–331| DOI= 10.1002/bies.200900147}}</ref><ref>{{Literatur | Autor = Carlos G. Acevedo-Rocha, Nediljko Budisa | Titel = On the Road towards Chemically Modified Organisms Endowed with a Genetic Firewall | Sammelwerk = Angewandte Chemie International Edition | Band = 50 | Jahr = 2011 | Datum = 2011-00-00| Nummer = 31| Seiten = 6960–6962| DOI= 10.1002/anie.201103010}}</ref> Dieses Konzept einer genetischen Firewall scheint mehrere Einschränkungen bestehender biologischer Sicherheitssysteme zu beheben.<ref>{{Literatur | Autor = Gerd H. G. Moe-Behrens, Rene Davis, Karmella A. Haynes | Titel = Preparing synthetic biology for the world | Sammelwerk = Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation | Band = 4 | Jahr = 2013 | Datum = 2013-00-00| Seiten = 5| DOI= 10.3389/fmicb.2013.00005}}</ref><ref>{{Literatur | Autor = Oliver Wright, Guy-Bart Stan, Tom Ellis | Titel = Building-in Biosafety for Synthetic Biology | Sammelwerk = Microbiology | Jahr = 2013 | Datum = 2013-03-21| Seiten = 1221–1350| DOI= 10.1099/mic.0.066308-0| PMID = 23519158}}</ref> Erste experimentelle Belege, die das theoretische Konzept der genetischen Firewall als probates Zukunftsinstrument ausweisen, wurden 2013 mit der Erstellung des eines genomrekodierten Organismus (GRO) geliefert. In diesem Organismus wurden alle TAG-Stopp[[codon]]s in E.&nbsp;coli durch TAA-Codons ersetzt. Dies ermöglichte dei Deletion des Freisetzungsfaktors 1 un darauf aufbauend die Neubesetzung des TAG Codons zum Aminosäure- statt Stoppsignal. Dieser GRO zeigte in Folge eine höhere Resistenz gegenüber T7-Bakteriophageninfektionen. Dies unterstreicht, dass alternative genetische Codes die genetische Kompatibilität verringern können.<ref>{{Literatur | Autor = Marc J. Lajoie u.&nbsp;a. | Titel = Genomically Recoded Organisms Expand Biological Functions | Sammelwerk = Science | Band = 342 | Jahr = 2013 | Datum = 2013-10-18| Nummer = 6156| Seiten = 357–360| DOI= 10.1126/science.1241459| PMID = 24136966}}</ref> Nichtsdestotrotz ist dieser GRO immer noch seinen natürlichen Vorgängern sehr ähnlich und verfügt dementsprechend noch nicht über eine „genetische Firewall“. Das Beispiel verdeutlicht jedoch, dass die Neubesetzung einer größeren Anzahl von Triplett-Codons die Perspektive eröffnet, in nicht so ferner Zukunft Bakterienstämme zu erzeugen, die XNA, neue Basenpaare, neue genetische Codes usw. verwenden. Mit diesen semantischen Veränderungen wären diese Stämme dann nicht mehr in der Lage genetische Informationen mit der natürlichen Umwelt auszutauschen.
Xenobiologische Systeme wurden entwickelt, um orthogonal zu den natürlichen biologischen Systemen unseres Planeten zu sein. Ein (jedoch bisher rein hypothetischer) XNA-Organismus,<ref>{{Literatur | Autor = Piet Herdewijn, Philippe Marlière | Titel = Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids | Sammelwerk = Chemistry & Biodiversity | Band = 6 | Jahr = 2009 | Datum = 2009-00-00| Nummer = 6| Seiten = 791–808| DOI= 10.1002/cbdv.200900083}}</ref> der XNA, andere Basenpaare und neue Polymerasen besitzt sowie einen veränderten genetischen Code verwendet, wird nur sehr schwer in der Lage sein, mit den natürlichen Formen des Lebens auf genetischer Ebene zu interagieren. In diesem Sinne repräsentierten xenobiologische Organismen eine genetische Enklave, die genetische Informationen mit natürlichen Zellen nicht austauschen kann.<ref>{{Literatur | Autor = Philippe Marliere | Titel = The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world | Sammelwerk = Systems and Synthetic Biology | Band = 3 | Jahr = 2009 | Datum = 2009-12-01| Nummer = 1–4| Seiten = 77–84| DOI= 10.1007/s11693-009-9040-9}}</ref> Die Veränderung der genetischen Replikationsmaschine einer Zelle führt daher zu einer sogenannten „semantischen Eindämmung“. Als Sicherheitskonzept kann diese&nbsp;- in Analogie zur Informationsverarbeitung im IT-Bereich&nbsp;– als eine genetische Firewall bezeichnet werden.<ref>{{Literatur | Autor = Markus Schmidt | Titel = Xenobiology: A new form of life as the ultimate biosafety tool | Sammelwerk = BioEssays | Band = 32 | Jahr = 2010 | Datum = 2010-00-00| Nummer = 4| Seiten = 322–331| DOI= 10.1002/bies.200900147}}</ref><ref>{{Literatur | Autor = Carlos G. Acevedo-Rocha, Nediljko Budisa | Titel = On the Road towards Chemically Modified Organisms Endowed with a Genetic Firewall | Sammelwerk = Angewandte Chemie International Edition | Band = 50 | Jahr = 2011 | Datum = 2011-00-00| Nummer = 31| Seiten = 6960–6962| DOI= 10.1002/anie.201103010}}</ref> Dieses Konzept einer genetischen Firewall scheint mehrere Einschränkungen bestehender biologischer Sicherheitssysteme zu beheben.<ref>{{Literatur | Autor = Gerd H. G. Moe-Behrens, Rene Davis, Karmella A. Haynes | Titel = Preparing synthetic biology for the world | Sammelwerk = Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation | Band = 4 | Jahr = 2013 | Datum = 2013-00-00| Seiten = 5| DOI= 10.3389/fmicb.2013.00005}}</ref><ref>{{Literatur | Autor = Oliver Wright, Guy-Bart Stan, Tom Ellis | Titel = Building-in Biosafety for Synthetic Biology | Sammelwerk = Microbiology | Jahr = 2013 | Datum = 2013-03-21| Seiten = 1221–1350| DOI= 10.1099/mic.0.066308-0| PMID = 23519158}}</ref> Erste experimentelle Belege, die das theoretische Konzept der genetischen Firewall als probates Zukunftsinstrument ausweisen, wurden 2013 mit der Erstellung eines genomrekodierten Organismus (GRO) geliefert. In diesem Organismus wurden alle TAG-Stopp[[codon]]s in E.&nbsp;coli durch TAA-Codons ersetzt. Dies ermöglichte die Deletion des Freisetzungsfaktors 1 und darauf aufbauend die Neubesetzung des TAG-Codons zum Aminosäure- statt Stoppsignal. Dieser GRO zeigte in Folge eine höhere Resistenz gegenüber T7-Bakteriophageninfektionen. Dies unterstreicht, dass alternative genetische Codes die genetische Kompatibilität verringern können.<ref>{{Literatur | Autor = Marc J. Lajoie u.&nbsp;a. | Titel = Genomically Recoded Organisms Expand Biological Functions | Sammelwerk = Science | Band = 342 | Jahr = 2013 | Datum = 2013-10-18| Nummer = 6156| Seiten = 357–360| DOI= 10.1126/science.1241459| PMID = 24136966}}</ref> Nichtsdestotrotz ist dieser GRO seinen natürlichen Vorgängern immer noch sehr ähnlich und verfügt dementsprechend noch nicht über eine „genetische Firewall“. Das Beispiel verdeutlicht jedoch, dass die Neubesetzung einer größeren Anzahl von Triplett-Codons die Perspektive eröffnet, in nicht so ferner Zukunft Bakterienstämme zu erzeugen, die XNA, neue Basenpaare, neue genetische Codes usw. verwenden. Mit diesen semantischen Veränderungen wären diese Stämme dann nicht mehr in der Lage, genetische Informationen mit der natürlichen Umwelt auszutauschen.
Während solch eine genetische Firewall semantische Eindämmungsmechanismen in neue Organismen implementieren würde, müssen ebenfalls neue biochemische Systeme für Toxine und Xenobiotika erst noch entwickelt werden .<ref>{{Literatur | Autor = Markus Schmidt, Lei Pei | Titel = Synthetic Toxicology: Where Engineering Meets Biology and Toxicology | Sammelwerk = Toxicological Sciences | Band = 120 | Jahr = 2011 | Datum = 2011-01-03| Nummer = Suppl. 1| Seiten = S204–S224| DOI= 10.1093/toxsci/kfq339| PMID = 21068213}}</ref><ref>Schmidt M. 2013. Safeguarding the Genetic Firewall with Xenobiology. In: ISGP. 2013. 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance.</ref>
Während solch eine genetische Firewall semantische Eindämmungsmechanismen in neue Organismen implementieren würde, müssen ebenfalls neue biochemische Systeme für Toxine und Xenobiotika erst noch entwickelt werden.<ref>{{Literatur | Autor = Markus Schmidt, Lei Pei | Titel = Synthetic Toxicology: Where Engineering Meets Biology and Toxicology | Sammelwerk = Toxicological Sciences | Band = 120 | Jahr = 2011 | Datum = 2011-01-03| Nummer = Suppl. 1| Seiten = S204–S224| DOI= 10.1093/toxsci/kfq339| PMID = 21068213}}</ref><ref>M. Schmidt: ''Safeguarding the Genetic Firewall with Xenobiology.'' In: ''ISGP.'' 2013. 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance.</ref>


== Administrations- und Regulationsaspekte ==
== Administrations- und Regulationsaspekte ==
Xenobiologie könnte die derzeit gültigen regulatorischen Rahmenbedingungen sprengen und zu neuen rechtlichen Herausforderungen führen. Derzeit beschäftigen sich Gesetze und Richtlinien zwar mit genetisch veränderte Organismen (GMOs), aber erwähnen in keinster Weise chemisch modifizierte oder genomrekodierte Organismen. Wenn man berücksichtigt, dass richtige xenobiologische Orgnismen in den nächsten Jahren noch nicht zu erwarten sind, haben Entscheidungsträger immer noch Zeit, sich auf die zukünftigen regulatorischen Herausforderungen vorzubereiten. Seit 2012 gibt es in den USA entsprechende politische Berater,<ref>ISGP. 2013. [http://www.scienceforglobalpolicy.org/LinkClick.aspx?fileticket=VqAc-vBzvMk%3D&tabid=76 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance] p. 55-65.</ref> vier nationale Ausschüsse für Biosicherheit in Europa<ref>K. Pauwels u. a.: ''Event report: SynBio Workshop (Paris 2012) – Risk assessment challenges of Synthetic Biology.'' (2013) Journal für Verbraucherschutz und Lebensmittelsicherheit. {{DOI|10.1007/s00003-013-0829-9</ref> sowie die European Molecular Biology Organisation,<ref>M. Garfinkel: [http://www.embo.org/documents/science_policy/biocontainment_ESF_EMBO_2012_workshop_report.pdf ''Biological containment of synthetic microorganisms: science and policy.''] (2013) Report on a ESF/LESC Strategic Workshop.</ref> um diese Thematik als zukünfitg zu regelndes Feld aufzuarbeiten.
Xenobiologie könnte die derzeit gültigen regulatorischen Rahmenbedingungen sprengen und zu neuen rechtlichen Herausforderungen führen. Derzeit beschäftigen sich Gesetze und Richtlinien zwar mit genetisch veränderten Organismen (GMOs), erwähnen aber in keinster Weise chemisch modifizierte oder genomrekodierte Organismen. Wenn man berücksichtigt, dass richtige xenobiologische Orgnismen in den nächsten Jahren noch nicht zu erwarten sind, haben Entscheidungsträger immer noch Zeit, sich auf die zukünftigen regulatorischen Herausforderungen vorzubereiten. Seit 2012 gibt es in den USA entsprechende politische Berater,<ref>ISGP: [http://www.scienceforglobalpolicy.org/LinkClick.aspx?fileticket=VqAc-vBzvMk%3D&tabid=76 ''21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance.''] 2013, S.&nbsp;55-65.</ref> vier nationale Ausschüsse für Biosicherheit in Europa<ref>K. Pauwels u. a.: ''Event report: SynBio Workshop (Paris 2012) – Risk assessment challenges of Synthetic Biology.'' (2013) Journal für Verbraucherschutz und Lebensmittelsicherheit. {{DOI|10.1007/s00003-013-0829-9}}</ref> sowie die European Molecular Biology Organisation,<ref>M. Garfinkel: [http://www.embo.org/documents/science_policy/biocontainment_ESF_EMBO_2012_workshop_report.pdf ''Biological containment of synthetic microorganisms: science and policy.''] (2013) Report on a ESF/LESC Strategic Workshop.</ref> um diese Thematik als zukünftig zu regelndes Feld aufzuarbeiten.


== Einzelnachweise ==
== Einzelnachweise ==

Version vom 14. Januar 2014, 06:01 Uhr

Xenobiologie (XB) ist eine Teildisziplin der synthetischen Biologie, die sich mit der Synthese und der Manipulation komplexer biologischer Schaltkreise und Systeme beschäftigt. Aus dem Griechischen xénos (griech. für „Gast; Femder“) abgeleitet, beschreibt Xenobiologie biologische Formen, die der Wissenschaft bisher unbekannt oder nicht natürlichen Ursprungs sind. In experimenteller Praxis bezeichnet die XB neuartige biologische und biochemische Systeme, die sich von dem kanonischen DNA-RNA-20 Aminosäurensystem unterscheiden (siehe dazu Zentrales Dogma der Molekularbiologie). In diesem Sinne werden in der Xenobiologie die natürlichen DNA- und RNA-Moleküle durch synthetische Nukleinsäure-Analoga ersetzt und unter der Bezeichnung Xenonukleinsäuren (XNA) als Informationträger verwendet.[1] Ebenfalls fokussiert sich Xenobiologie auf die Erweiterung des genetischen Codes[2] und den Einbau nichtproteinogener Aminosäuren (nichtkanonische Aminosäuren) in Proteine.[3]

Abgrenzung zwischen Xeno-, Exo-, und Astrobiologie

Das Präfix astro- (griechisch ástron = Stern(-bild)) besitzt als Bestimmungswort die Bedeutung Gestirn-, Stern-, Weltall,[4] wobei Exo (griechisch éxō, zu: ex = (her)aus) als Bestimmungswort der Bedeutung außen, außerhalb zugeordnet wird.[5] Exobiologie und Astrobiologie beschäftigen sich mit der möglichen Existenz und Entstehung von außerirdischem Leben und der allgemeinen Suche nach Leben im All, wobei sich dabei das Interesse meist auf Planeten in der habitablen Zone konzentriert. Im Gegensatz zu Astrobiologen, die versuchen, mögliches extraterrestrisches Leben im Universum zu detektieren und zu analysieren, beschäftigen sich Xenobiologen mit dem Versuch, Lebensformen mit grundlegend anderer Biochemie oder abweichendem genetischen Code auf der Erde zu entwickeln.[6]

Ziele der Xenobiologie

Die Xenobiologie hat das Potenzial, fundamentale Prinzipien der Biologie und Wissen über den Ursprung des Lebens aufzudecken. Um diesen besser zu verstehen, ist es wichtig, herauszufinden, warum sich das Leben (höchstwahrscheinlich) über die frühe RNA-Welt zu einem DNA-RNA-Protein-System mit einem universellen genetischen Code entwickelt hat.[7] In diesem Zusammenhang stehen die Fragen, ob das Leben ein evolutiver „Zufall“ war oder ob bestimmte selektive Zwänge existierten, die eine andere Biochemie des Lebens von Anfang an ausschlossen. Durch das Erzeugen alternativer biochemischer „Ursuppen“ wird erwartet, fundamentale Prinzipien zu ergründen, die zur Entwicklung des Lebens, wie wir es heute kennen, beigetragen haben.

Abseits von der Grundlagenforschung bietet die Xenobiologie zahlreiche neue Ansätze zur Entwicklung industrieller Produktionssysteme, mit denen neuartige Herstellungsmöglichkeiten im Bereich des Biopolymer Engineerings und der Pathogenresistenzen geschaffen werden. Der genetische Code kodiert in allen Organismen 20 kanonische Aminosäuren, die zur Proteinbiosynthese verwendet werden. In seltenen Fällen werden auch die speziellen Aminosäuren Selenomethionin, Selenocystein und Pyrrolysin durch zusätzliche Translationskomponenten in Proteine eingebaut.[8] Es gibt jedoch 700 weitere Aminosäuren, die in der Biochemie bekannt sind und deren Eigenschaften man Nutzen könnte, um das Potential von Proteinen im Hinblick auf effizientere katalytische Funktionen oder Materialeigenschaften zu verbessern. Das EU-geförderte Projekt METACODE beispielsweise verfolgt das Ziel, die Metathese - ein nützlicher katalytischer Vorgang, der in lebenden Organismen bisher unbekannt ist - in Bakterienzellen zu etablieren. Weiteres Potential für die Verbesserung von Produktionsprozessen durch die XB liegt in der Möglichkeit, das Risiko von Viren- oder Bakteriophagenbefall während der Kultivierung zu minimieren. Xenobiologische Zellen eigneten sich nicht mehr als Wirte für Viren und Phagen, da sie durch eine sogenannte „semantische Eindämmung“ eine höhere Resistenz aufweisen.

Xenobiologie ermöglicht die Entwicklung neuartiger Systeme der Eindämmung genetisch modifizierter Organismen (Biocontainment). Dabei wird das Ziel verfolgt, mit einer „genetischen Firewall“ derzeitige Eindämmungsansätze zu verstärken und zu diversifizieren. Ein vielfach angeführter Kritikpunkt an der tranditionellen Gentechnik und Biotechnologie ist die Möglichkeit des horizontalen Gentransfers von gentechnisch veränderten Organismen in die Umwelt und daraus entstehende potentielle Risiken für die Natur und die menschliche Gesundheit. Eine der Hauptideen der XB ist es nun, alternative genetische Codes und biochemische Grundbausteine zu entwickeln, sodass ein horizontaler Gentransfer nicht länger möglich ist. Eine veränderte Biochemie würde neue synthetische Auxotrophien ermöglichen und diese nutzen, um orthogonale biologische Systeme zu erzeugen, die nicht länger kompatibel mit den natürlichen genetischen Systemen sind.[9]

Wissenschaftlicher Ansatz

Die Xenobiologie verfolgt das Ziel, biologische Systeme zu konstruieren und herzustellen, die sich von ihren natürlichen Vorlagen auf einer oder mehreren fundamentalen Ebenen unterscheiden. Im Idealfall wären diese neuartigen Lebewesen in jedem möglichen biochemischen Aspekt unterschiedlich und enthielten einen sehr stark abgeänderten genetischen Code. Das Langzeitziel ist es, eine Zelle zu entwickeln, die ihre genetische Information nicht mehr in DNA speichert und mit 20 Aminosäuren übersetzt, sondern in alternativen Informationsträger-Polymeren, die aus XNA, alternativer Basenpaarung und nichtkanonischen Aminosäuren (d. h. einem veränderten genetischen Code) bestehen. Bislang gelang es nur, Zellen zu erzeugen, die eine oder zwei der genannten Eigenschaften implementiert hatten.

Xenonukleinsäuren (XNA)

Ursprünglich entstand die Forschung nach alternativen DNA-Formen aus der Frage nach der Entstehung des Lebens sowie warum RNA und DNA durch die (chemische) Evolution den Vorzug vor anderen möglichen Nukleinsäurestrukturen erhielten.[10] Eine systematische Untersuchung, die auf die Diversifizierung der chemischen Nukleinssäurenstruktur abzielte, resultierte in völlig neuartigen informationstragenden Biopolymeren. Bisher wurden mehrere XNAs mit neuem chemischen Grundgerüst oder neuartigen Nukleobasen synthetisiert,[11][12][13][14] zum Beispiel hexose nucleic acid (HNA), threose nucleic acid (TNA),[15] glycol nucleic acid (GNA) und cyclohexenyl nucleic acid (CeNA).[16] Der Einbau von XNA in ein Plasmid in Form von drei HNA-Codons wurde bereits 2003 erfolgreich durchgeführt.[17] Diese Xenonukleinsäuren werden bereits in vivo in E. coli als Vorlage für die DNA-Synthese genutzt. Dabei wurden eine binäre genetische Kasette (G/T) und zwei Nicht-DNA-Basen (Hx/U) verwendet. Während der Einbau von CeNA ebenfalls erfolgreich durchgeführt werden konnte, scheiterte bisher jeder Versuch, GNA als Rückgrat zu verwenden, da in diesem Fall zu große Unterschiede zum natürlichen System bestehen, um als Matrize für die Biosynthese von DNA durch die natürliche Maschinerie zu dienen.[18] Diese erweiterten Basenpaare, die auf der Chemie eines natürlichen DNA-Rückgrats existieren, könnten jedoch wahrscheinlich in begrenztem Rahmen wieder in natürliche DNA umgewandelt werden.[19]

Erweiterung des genetischen Alphabetes

Während XNA lediglich auf Modifikation im Polymerrückgrat oder an den Nukleobasen basiert, zielen andere Versuche darauf ab, das natürliche Alphabet der DNA auszutauschen oder mit unnatürlichen Basenpaaren zu erweitern oder komplett zu ersetzen. Zum Beispiel wurde DNA hergestellt, die statt der vier Standardnukleobasen (A, T, G und C) ein erweitertes Alphabet mit 6 Nukleobasen ( A, T, G, C, P und Z) enthielt. Dabei steht bei diesen zwei neuen Basen P für 2-Amino-8-(1-beta-D-2'-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-4 (8H) und Z für 6-Amino-5-nitro3-(l'-p-D-2'-deoxyribofuranosyl)-2(1H)-pyridone.[20][21][22] In einer systematischen Studie untersuchten Leconte et al. die mögliche Einbaubarkeit von 60 Basenkandidaten (dies entspräche 3600 möglichen Basenpaaren) in die DNA.[23]

Neuartige Polymerasen

Weder XNA noch die unnatürlichen Basen werden von natürlichen Polymerasen erkannt. Demnach ist eine der größten Herausforderungen die Entwicklung und Herstellung neuartiger Polymerasetypen, die in der Lage sind, diese neuartigen Strukturen zu replizieren. So wurde bereits eine modifizierte Variante der HIV-Reverse Transkriptase entdeckt, die imstande war, in einer PCR-Amplifikation ein Oligonukleotidamplifikat zu erzeugen, das ein zusätzliches drittes Basenpaar enthielt.[24][25] Pinheiro u. a. (2012) demonstrierten, dass mittels der Evolution und Konstruktion von Polymerasen genetische Information (von unter 100 bp Länge) erfolgreich gespeichert und wiederhergestellt werden kann. Dies geschah auf der Basis von sechs alternativen Informationsspeicher-Polymeren (Xenonukleinsäuren).[26]

Erweiterung des genetischen Codes

Eines der Ziele der Xenobiologie ist die Neugestaltung des universellen genetischen Codes. Der derzeit vielversprechendste Ansatz zum Erreichen dieses Zieles ist die Neubesetzung von seltenen oder sogar unbenutzten Codons.[27] Im Idealfall entstünden dadurch „Leerstellen“ im derzeitigen Code, die mit neuen, nichtkanonischen Aminosäuren (ncAA) neu besetzt werden können („Expansion des genetischen Codes“, engl. code expansion).

Da derartige Strategien sehr schwer zu implementieren sind und viel Zeit erfordern, können kurzfristig auch Abkürzungen genommen werden. So werden beim „Engineering des genetischen Codes“ (engl. code engineering) beispielsweise Bakterien, die bestimmte Aminosäuren nicht selbst herstellen können, unter bestimmten Kulturbedingungen isostrukturelle Analoga der natürlichen Aminosäuren angeboten, die sie dann statt der natürlichen Aminosäuren in Proteine einbauen. Bei dieser Methode wird jedoch nur eine kanonische Aminosäure durch eine nichtkanonische ersetzt und es kommt strenggenommen nicht zu einer „Erweiterung“ des genetischen Codes. Auf diese Weise ist es jedoch leicht möglich, mehrere nichkanonische Aminosäuren gleichzeitig in Proteine einzubauen.[28] Das Aminosäurereportoire kann jedoch nicht nur erweitert sondern auch reduziert werden.[29] Die Codonspezifität kann geändert werden, indem neue tRNA/Aminoacyl-tRNA-Synthetasepaare so modifiziert werden, dass sie andere Codons erkennen. Zellen mit solch neuer Konfiguration sind dann in der Lage, mRNA-Sequenzen zu entziffern, die für die natürliche Proteinbiosynthesemaschinerie unbrauchbar wären.[30] Neuartige tRNAs/Aminoacyl-tRNA-Synthetasepaare können darauf aufbauend auch für den ortsspezifischen in-vivo-Einbau von nichtkanonischen Aminosäuren herangezogen werden.[31][32] In der Vergangenheit geschah die Neuordnung von Codons hauptsächlich nur in einem sehr limitierten Rahmen. Im Jahr 2013 jedoch wurde zum ersten Mal ein komplettes Codon aus einem Genom entfernt, das nun frei für die Belegung mit neuen Aminosäuren ist. Konkret konnten die Gruppen um Farren Isaac und Georg Church an der Harvard Universität alle 314 TAG-Stoppcodons im Genom von E. Coli durch TAA-Stoppcodons ersetzen, wobei sie demonstrierten, dass ein massiver Austausch von einzelnen Codons durch andere letale Effekte für den jeweiligen Organismus möglich ist.[33] Aufbauend auf diesem Erfolg des genomweiten Codonaustausches, konnten die Arbeitsgruppen 13 Codons in 42 essentiellen Genen durch deren Synonyme ersetzen und so in diesen Genen den genetischen code von 64 auf 51 verwendete Codons verringen.[34]

Ein noch radikalerer Schritt zur Veränderung des genetischen Codes ist der Übergang weg von den natürlichem Triplett-Codons und hin zu Quadruplett- oder sogar Pentaplett-Codons. Masahiko Sisido und Schultz leisteten auf diesem Gebiet Pionierarbeit, wobei Sisido[35] es schaffte, in einem zellfreien System einen pentablen Code zu etablieren und Schultz[36] sogar Bakterien dazu brachte, mit Quadruplett-Codons zu arbeiten. Letztendlich ist es möglich, sogar die oben erwähnten nichtnatürliche Nukleobasen (XNA) zu nutzen, um nichtkanonische Aminosäuren in Proteine einzubringen.[37]

Gezielte Evolution

Eine weitere Möglichkeit, DNA durch XNA zu ersetzen, wäre es, anstatt der genetischen Moleküle gezielt die Zellumgebung zu verändern. Dieser Ansatz wurde bereits erfolgreich von Marliere und Mutzel demonstriert, indem sie einen neuen E.-coli-Stamm herstellten, der über eine DNA-Struktur verfügt, die sich aus den Standardnukleotiden A, C und G sowie aus einem synthetischen Thyminanalogon zusammensetzt. Dabei wurde das Thyminanalogon 5-chlorouracil sequenzspezifisch an alle Positionen des natürlichen Thymins ins Genom eingebaut. Um zu wachsen sind diese Zellen von der externen Zugabe der Base 5-Chlorouracil abhängig, verhalten sich aber ansonsten wie normale E.-coli-Bakterien. Mit diesem Ansatz entstehen zwei Schutzebenen, um jegliche Interaktion zwischen nichtnatürlichen und natürlichen Bakterien zu verhindern, da der Stamm über eine Auxotrophie für eine nichtnatürliche chemische Substanz besitzt und der Organismus ebenfalls eine DNA-Form hat, die von keinen anderen Organismen entschlüsselt werden kann.[38]

Biologische Sicherheit

Xenobiologische Systeme wurden entwickelt, um orthogonal zu den natürlichen biologischen Systemen unseres Planeten zu sein. Ein (jedoch bisher rein hypothetischer) XNA-Organismus,[39] der XNA, andere Basenpaare und neue Polymerasen besitzt sowie einen veränderten genetischen Code verwendet, wird nur sehr schwer in der Lage sein, mit den natürlichen Formen des Lebens auf genetischer Ebene zu interagieren. In diesem Sinne repräsentierten xenobiologische Organismen eine genetische Enklave, die genetische Informationen mit natürlichen Zellen nicht austauschen kann.[40] Die Veränderung der genetischen Replikationsmaschine einer Zelle führt daher zu einer sogenannten „semantischen Eindämmung“. Als Sicherheitskonzept kann diese - in Analogie zur Informationsverarbeitung im IT-Bereich – als eine genetische Firewall bezeichnet werden.[41][42] Dieses Konzept einer genetischen Firewall scheint mehrere Einschränkungen bestehender biologischer Sicherheitssysteme zu beheben.[43][44] Erste experimentelle Belege, die das theoretische Konzept der genetischen Firewall als probates Zukunftsinstrument ausweisen, wurden 2013 mit der Erstellung eines genomrekodierten Organismus (GRO) geliefert. In diesem Organismus wurden alle TAG-Stoppcodons in E. coli durch TAA-Codons ersetzt. Dies ermöglichte die Deletion des Freisetzungsfaktors 1 und darauf aufbauend die Neubesetzung des TAG-Codons zum Aminosäure- statt Stoppsignal. Dieser GRO zeigte in Folge eine höhere Resistenz gegenüber T7-Bakteriophageninfektionen. Dies unterstreicht, dass alternative genetische Codes die genetische Kompatibilität verringern können.[45] Nichtsdestotrotz ist dieser GRO seinen natürlichen Vorgängern immer noch sehr ähnlich und verfügt dementsprechend noch nicht über eine „genetische Firewall“. Das Beispiel verdeutlicht jedoch, dass die Neubesetzung einer größeren Anzahl von Triplett-Codons die Perspektive eröffnet, in nicht so ferner Zukunft Bakterienstämme zu erzeugen, die XNA, neue Basenpaare, neue genetische Codes usw. verwenden. Mit diesen semantischen Veränderungen wären diese Stämme dann nicht mehr in der Lage, genetische Informationen mit der natürlichen Umwelt auszutauschen. Während solch eine genetische Firewall semantische Eindämmungsmechanismen in neue Organismen implementieren würde, müssen ebenfalls neue biochemische Systeme für Toxine und Xenobiotika erst noch entwickelt werden.[46][47]

Administrations- und Regulationsaspekte

Xenobiologie könnte die derzeit gültigen regulatorischen Rahmenbedingungen sprengen und zu neuen rechtlichen Herausforderungen führen. Derzeit beschäftigen sich Gesetze und Richtlinien zwar mit genetisch veränderten Organismen (GMOs), erwähnen aber in keinster Weise chemisch modifizierte oder genomrekodierte Organismen. Wenn man berücksichtigt, dass richtige xenobiologische Orgnismen in den nächsten Jahren noch nicht zu erwarten sind, haben Entscheidungsträger immer noch Zeit, sich auf die zukünftigen regulatorischen Herausforderungen vorzubereiten. Seit 2012 gibt es in den USA entsprechende politische Berater,[48] vier nationale Ausschüsse für Biosicherheit in Europa[49] sowie die European Molecular Biology Organisation,[50] um diese Thematik als zukünftig zu regelndes Feld aufzuarbeiten.

Einzelnachweise

  1. Vitor B Pinheiro, Philipp Holliger: The XNA world: progress towards replication and evolution of synthetic genetic polymers. In: Current Opinion in Chemical Biology. Band 16, Nr. 3–4, 2012, S. 245–252, doi:10.1016/j.cbpa.2012.05.198.
  2. J. D. Bain, Christopher Switzer, Richard Chamberlin, Steven A. Bennert: Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. In: Nature. Band 356, Nr. 6369, 1992, S. 537–539, doi:10.1038/356537a0.
  3. C. J. Noren, S. J. Anthony-Cahill, M. C. Griffith, P. G. Schultz: A general method for site-specific incorporation of unnatural amino acids into proteins. In: Science. Band 244, Nr. 4901, 1989, S. 182–188, doi:10.1126/science.2649980, PMID 2649980.
  4. Duden: Astro
  5. Duden: Exo
  6. Markus Schmidt: Xenobiology: A new form of life as the ultimate biosafety tool. In: BioEssays. Band 32, Nr. 4, 2010, S. 322–331, doi:10.1002/bies.200900147.
  7. Norman R. Pace: The universal nature of biochemistry. In: Proceedings of the National Academy of Sciences. Band 98, Nr. 3, 2001, S. 805–808, doi:10.1073/pnas.98.3.805, PMID 11158550.
  8. Birgit Wiltschi, Nediljko Budisa: Natural history and experimental evolution of the genetic code. In: Applied Microbiology and Biotechnology. Band 74, Nr. 4, 2007, S. 739–753, doi:10.1007/s00253-006-0823-6.
  9. Piet Herdewijn, Philippe Marlière: Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. In: Chemistry & Biodiversity. Band 6, Nr. 6, 2009, S. 791–808, doi:10.1002/cbdv.200900083.
  10. Albert Eschenmoser: Chemical Etiology of Nucleic Acid Structure. In: Science. Band 284, Nr. 5423, 1999, S. 2118–2124, doi:10.1126/science.284.5423.2118, PMID 10381870.
  11. Karen Vastmans, Matheus Froeyen, Luc Kerremans, Sylvie Pochet, Piet Herdewijn: Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides. In: Nucleic Acids Research. Band 29, Nr. 15, 2001, S. 3154–3163, doi:10.1093/nar/29.15.3154, PMID 11470872.
  12. Mi-Yeon Jang u. a.: A Synthetic Substrate of DNA Polymerase Deviating from the Bases, Sugar, and Leaving Group of Canonical Deoxynucleoside Triphosphates. In: Chemistry & Biology. Band 20, Nr. 3, 2013, S. 416–423, doi:10.1016/j.chembiol.2013.02.010.
  13. Vitor B Pinheiro, Philipp Holliger: The XNA world: progress towards replication and evolution of synthetic genetic polymers. In: Current Opinion in Chemical Biology. Band 16, Nr. 3–4, 2012, S. 245–252, doi:10.1016/j.cbpa.2012.05.198.
  14. Vitor B. Pinheiro, David Loakes, Philipp Holliger: Synthetic polymers and their potential as genetic materials. In: BioEssays. Band 35, Nr. 2, 2013, S. 113–122, doi:10.1002/bies.201200135.
  15. Justin K. Ichida, Allen Horhota, Keyong Zou, Larry W. McLaughlin, Jack W. Szostak: High fidelity TNA synthesis by Therminator polymerase. In: Nucleic Acids Research. Band 33, Nr. 16, 2005, S. 5219–5225, doi:10.1093/nar/gki840, PMID 16157867.
  16. Veerle Kempeneers, Marleen Renders, Matheus Froeyen, Piet Herdewijn: Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. In: Nucleic Acids Research. Band 33, Nr. 12, 2005, S. 3828–3836, doi:10.1093/nar/gki695, PMID 16027107.
  17. Sylvie Pochet, P. Alexandre Kaminski, Arthur Van Aerschot, Piet Herdewijn, Philippe Marlière: Replication of hexitol oligonucleotides as a prelude to the propagation of a third type of nucleic acid in vivo. In: Comptes Rendus Biologies. Band 326, Nr. 12, 2003, S. 1175–1184, doi:10.1016/j.crvi.2003.10.004.
  18. Valérie Pezo, Feng Wu Liu, Mikhail Abramov, Mathy Froeyen, Piet Herdewijn, Philippe Marlière: Binary Genetic Cassettes for Selecting XNA-Templated DNA Synthesis In Vivo. In: Angewandte Chemie International Edition. Band 52, Nr. 31, 2013, S. 8139–8143, doi:10.1002/anie.201303288.
  19. Andrew T. Krueger, Larryn W. Peterson, Jijumon Chelliserry, Daniel J. Kleinbaum, Eric T. Kool: Encoding Phenotype in Bacteria with an Alternative Genetic Set. In: Journal of the American Chemical Society. Band 133, Nr. 45, 2011, S. 18447–18451, doi:10.1021/ja208025e.
  20. A. M. Sismour u. a.: PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1. (2004) Nucleic Acids Res. 32, 728–735.
  21. Z. Yang, D. Hutter, P. Sheng, A. M. Sismour und S. A. Benner: Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. (2006) Nucleic Acids Res. 34, 6095–6101.
  22. Z. Yang, A. M. Sismour, P. Sheng, N. L. Puskar und S. A. Benner: Enzymatic incorporation of a third nucleobase pair. (2007) Nucleic Acids Res. 35, 4238–4249.
  23. A. M. Leconte, G. T. Hwang, S. Matsuda, P. Capek, Y. Hari und F. E. Romesberg: Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. (2008) J. Am. Chem. Soc. 130, 2336–2343.
  24. A. M. Sismour und S. A. Benner: The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. (2005) Nucleic Acids Res. 33, 5640–5646.
  25. S. A. Havemann, S. Hoshika, D. Hutter und S. A. Benner: Incorporation of multiple sequential pseudothymidines by DNA polymerases and their impact on DNA duplex structure. (2008) Nucleosides Nucleotides Nucleic Acids 27, 261–278.
  26. V. B. Pinheiro u. a. Synthetic genetic polymers capable of heredity and evolution. (2012) Science 336: 341-344.
  27. Nediljko Budisa: Engineering the genetic code: expanding the amino acid repertoire for the design of novel proteins. Wiley-VCH, Weinheim 2005, ISBN 3527312439 Seite =(?!).
  28. Michael Georg Hoesl, Nediljko Budisa: Recent advances in genetic code engineering in Escherichia coli. In: Current opinion in biotechnology. Band 23, Nr. 5, 2012, S. 751–757, doi:10.1016/j.copbio.2011.12.027, PMID 22237016.
  29. V. Pezo u. a.: A Metabolic Prototype for Eliminating Tryptophan From The Genetic Code. In: Scientific Reports. Band 3, 2013, doi:10.1038/srep01359.
  30. Oliver Rackham, Jason W. Chin: A network of orthogonal ribosome·mRNA pairs. In: Nature Chemical Biology. Band 1, Nr. 3, 2005, S. 159–166, doi:10.1038/nchembio719.
  31. Lei Wang, Ansgar Brock, Brad Herberich, Peter G. Schultz: Expanding the Genetic Code of Escherichia coli. In: Science. Band 292, Nr. 5516, 2001, S. 498–500, doi:10.1126/science.1060077, PMID 11313494.
  32. Matthew C. T. Hartman, Kristopher Josephson, Chi-Wang Lin, Jack W. Szostak: An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides. In: PLoS ONE. Band 2, Nr. 10, 2007, S. e972, doi:10.1371/journal.pone.0000972.
  33. Farren J. Isaacs u. a.: Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement. In: Science. Band 333, Nr. 6040, 2011, S. 348–353, doi:10.1126/science.1205822, PMID 21764749.
  34. M. J. Lajoie, S. Kosuri, J. A. Mosberg, C. J. Gregg, D. Zhang, G. M. Church: Probing the Limits of Genetic Recoding in Essential Genes. In: Science. Band 342, Nr. 6156, 2013, S. 361–363, doi:10.1126/science.1241460, PMID 24136967.
  35. Takahiro Hohsaka, Masahiko Sisido: Incorporation of non-natural amino acids into proteins. In: Current Opinion in Chemical Biology. Band 6, Nr. 6, 2002, S. 809–815, doi:10.1016/S1367-5931(02)00376-9.
  36. J. Christopher Anderson, Ning Wu, Stephen W. Santoro, Vishva Lakshman, David S. King, Peter G. Schultz: An expanded genetic code with a functional quadruplet codon. In: Proceedings of the National Academy of Sciences of the United States of America. Band 101, Nr. 20, 2004, S. 7566–7571, doi:10.1073/pnas.0401517101, PMID 15138302.
  37. Ichiro Hirao u. a.: An unnatural base pair for incorporating amino acid analogs into proteins. In: Nature Biotechnology. Band 20, Nr. 2, 2002, S. 177–182, doi:10.1038/nbt0202-177.
  38. Philippe Marlière u. a.: Chemical Evolution of a Bacterium’s Genome. In: Angewandte Chemie International Edition. Band 50, Nr. 31, 2011, S. 7109–7114, doi:10.1002/anie.201100535.
  39. Piet Herdewijn, Philippe Marlière: Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. In: Chemistry & Biodiversity. Band 6, Nr. 6, 2009, S. 791–808, doi:10.1002/cbdv.200900083.
  40. Philippe Marliere: The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. In: Systems and Synthetic Biology. Band 3, Nr. 1–4, 2009, S. 77–84, doi:10.1007/s11693-009-9040-9.
  41. Markus Schmidt: Xenobiology: A new form of life as the ultimate biosafety tool. In: BioEssays. Band 32, Nr. 4, 2010, S. 322–331, doi:10.1002/bies.200900147.
  42. Carlos G. Acevedo-Rocha, Nediljko Budisa: On the Road towards Chemically Modified Organisms Endowed with a Genetic Firewall. In: Angewandte Chemie International Edition. Band 50, Nr. 31, 2011, S. 6960–6962, doi:10.1002/anie.201103010.
  43. Gerd H. G. Moe-Behrens, Rene Davis, Karmella A. Haynes: Preparing synthetic biology for the world. In: Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation. Band 4, 2013, S. 5, doi:10.3389/fmicb.2013.00005.
  44. Oliver Wright, Guy-Bart Stan, Tom Ellis: Building-in Biosafety for Synthetic Biology. In: Microbiology. 2013, S. 1221–1350, doi:10.1099/mic.0.066308-0, PMID 23519158.
  45. Marc J. Lajoie u. a.: Genomically Recoded Organisms Expand Biological Functions. In: Science. Band 342, Nr. 6156, 2013, S. 357–360, doi:10.1126/science.1241459, PMID 24136966.
  46. Markus Schmidt, Lei Pei: Synthetic Toxicology: Where Engineering Meets Biology and Toxicology. In: Toxicological Sciences. Band 120, Suppl. 1, 2011, S. S204–S224, doi:10.1093/toxsci/kfq339, PMID 21068213.
  47. M. Schmidt: Safeguarding the Genetic Firewall with Xenobiology. In: ISGP. 2013. 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance.
  48. ISGP: 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance. 2013, S. 55-65.
  49. K. Pauwels u. a.: Event report: SynBio Workshop (Paris 2012) – Risk assessment challenges of Synthetic Biology. (2013) Journal für Verbraucherschutz und Lebensmittelsicherheit. doi:10.1007/s00003-013-0829-9
  50. M. Garfinkel: Biological containment of synthetic microorganisms: science and policy. (2013) Report on a ESF/LESC Strategic Workshop.