„Spannungsabhängiger Farbstoff“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Inhalt gelöscht Inhalt hinzugefügt
Neu / teilweise aus EN-Wiki: Ein '''spannungsabhängiger Farbstoff''' (auch ''potentiometrischer Farbstoff'') ist ein Farbstoff, der bei Anlegen einer Spannung (Elektrizität) seine Farbe ändert.
(kein Unterschied)

Version vom 5. März 2014, 19:14 Uhr

Ein spannungsabhängiger Farbstoff (auch potentiometrischer Farbstoff) ist ein Farbstoff, der bei Anlegen einer Spannung seine Farbe ändert.[1]

Eigenschaften

Spannungsabhängige Farbstoffe werden unter anderem in der Elektrophysiologie und Neurobiologie verwendet, um Änderungen im Membranpotential wie Aktionspotentiale mikroskopisch verfolgen zu können,[2] z. B. in Neuronen und Myozyten.[3] Dabei zeigt sich der Ursprung, die Richtung und die Ausbreitungsgeschwindigkeit des Aktionspotentials. Die Änderung der Farbe zeigt sich bei einer Spannungsänderung durch eine Verschiebung des Maximums im Absorptionsspektrum bzw. bei Fluoreszenzfarbstoffen durch eine Verschiebung des Maximums im Emissionsspektrum. Der Farbumschlag kann durch eine Abnahme des Extinktionskoeffizienten bei der ursprünglichen Wellenlänge oder durch Zunahme des Extinktionskoeffizienten bei der Wellenlänge der veränderten Farbe verfolgt werden. Da spannungsabhängige Farbstoffe im Vergleich zu Elektroden weniger präzise in der Bestimmung der Spannungsänderung sind, werden sie meist dort eingesetzt, wo keine Elektroden eingeführt werden können, z. B. in Mitochondrien. Alternativ werden spannungsabhängige Reporterproteine verwendet, z. B. Ci-VSP.[4][5]

Im Vergleich zu Elektroden können viele Neuronen parallel beobachtet werden, einschließlich Richtung und Geschwindigkeit der Potentiale.[2] Der Vorgang ist teilweise reversibel, die Zellen können nach der Beobachtung mit Kulturmedium gespült werden, um den Farbstoff zu entfernen.[2] Die Reproduzierbarkeit, das Signal-Rausch-Verhältnis und die Sensitivität ist vergleichsweise geringer.[2] Die Diffusion durch Bindegewebe ist geringer.[2] Farbstoffe können unerwüschte pharmakologische Wirkungen haben, z. B. eine Steigerung der Photosensibilität.[2]

Typen

Fast-response probes (zu deutsch ‚schnellreagierende Sonden‘) sind meist amphiphile Farbstoffe mit aliphatischen Seitenketten, die sich in die Zellmembran einlagern und einem hydrophilen Rest mit dem Fluorophor, z. B. ANNINE-6plus.[6][7]

Slow-response probes (zu deutsch ‚langsamreagierende Sonden‘) ändern ihren Verteilungskoeffizienten nach Spannungsänderung und lagern sich dann erst in die Zellmembran ein, z. B. manche kationischen Carbocyanine, Rhodamine, und ionischen Oxonole.

Spannungsabhängige Farbstoffe sind oftmals Aminonaphthylethenylpyridinfarbstoffe, z. B. di-4-ANEPPS, di-8-ANEPPS und RH237.

Geschichte

Spannungsabhängige Farbstoffe wurden erstmal 1985 von der Arbeitsgruppe um Leslie Loew beschrieben.[8]

Literatur

  • Leslie M. Loew: Potentiometric dyes: Imaging electrical activity of cell membranes. In: Pure & Appl. Chem. (1996), Band 68, Nr. 7, S. 1405–1409.

Einzelnachweise

  1. L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, N. V. Thakor: Neurovascular coupling: in vivo optical techniques for functional brain imaging. In: Biomedical engineering online. Band 12, 2013, S. 38, ISSN 1475-925X. doi:10.1186/1475-925X-12-38. PMID 23631798. PMC 3655834 (freier Volltext).
  2. a b c d e f Baker BJ, Kosmidis EK, Vucinic D, et al.: Imaging brain activity with voltage- and calcium-sensitive dyes. In: Cell. Mol. Neurobiol. 25. Jahrgang, Nr. 2, März 2005, S. 245–82, doi:10.1007/s10571-005-3059-6, PMID 16050036.
  3. Cohen, Lawrence B and Salzberg, Brian M, "Optical Measurement of Membrane Potential" in Reviews of Physiology, Biochemistry and Pharmacalogy, vol. 83, pp. 35-88, 1978 (June); doi:10.1007/3-540-08907-1_2
  4. H. Mutoh, A. Perron, W. Akemann, Y. Iwamoto, T. Knöpfel: Optogenetic monitoring of membrane potentials. In: Experimental physiology. Band 96, Nummer 1, Januar 2011, S. 13–18, ISSN 1469-445X. doi:10.1113/expphysiol.2010.053942. PMID 20851856. PDF.
  5. H. Mutoh, W. Akemann, T. Knöpfel: Genetically engineered fluorescent voltage reporters. In: ACS chemical neuroscience. Band 3, Nummer 8, August 2012, S. 585–592, ISSN 1948-7193. doi:10.1021/cn300041b. PMID 22896802. PMC 3419450 (freier Volltext).
  6. Bu G., et al: Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes. In: Biophysical Journal. 96. Jahrgang, Nr. 6, März 2009, S. 2532–2546, doi:10.1016/j.bpj.2008.12.3896, PMID 19289075, PMC 2907679 (freier Volltext), bibcode:2009BpJ....96.2532B.
  7. David Robinson, Besley, Nicholas A.; O’Shea, Paul; Hirst, Jonathan D.: Di-8-ANEPPS Emission Spectra in Phospholipid/Cholesterol Membranes: A Theoretical Study. In: The Journal of Physical Chemistry B. 115. Jahrgang, Nr. 14, 14. April 2011, S. 4160–4167, doi:10.1021/jp1111372.
  8. Fluhler E, Burnham VG, Loew LM: Spectra, membrane binding, and potentiometric responses of new charge shift probes. In: Biochemistry. 24. Jahrgang, Nr. 21, Oktober 1985, S. 5749–55, doi:10.1021/bi00342a010, PMID 4084490.