„Formale Begriffsanalyse“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
+Literatur-Hinweis
K Wikifizierung
Zeile 1: Zeile 1:
'''Formale Begriffsanalyse''' (FBA) ist ein Teil der mathematischen [[Ordnungstheorie]]. Ihre ursprüngliche Motivation ist die konkrete Darstellung vollständiger [[Verband (Mathematik)|Verbände]] und deren Eigenschaften mittels ''formaler Kontexte'', um Eigenschaften dieser Verbände als Eigenschaften der zugeordneten Kontexte zu studieren. Wegen der englischen Übersetzung ''Formal Concept Analysis'' findet man zuweilen im Deutschen auch die eigentlich falsche Bezeichnung ''Formale Konzeptanalyse''.
'''Formale Begriffsanalyse''' (FBA) ist ein Teil der mathematischen [[Ordnungstheorie]]. Ihre ursprüngliche Motivation ist die konkrete Darstellung vollständiger [[Verband (Mathematik)|Verbände]] und deren Eigenschaften mittels ''formaler Kontexte'', um Eigenschaften dieser Verbände als Eigenschaften der zugeordneten Kontexte zu studieren. Wegen der englischen Übersetzung ''Formal Concept Analysis'' findet man zuweilen im Deutschen auch die eigentlich falsche Bezeichnung ''Formale Konzeptanalyse''.


Die Theorie in ihrer heutigen Form geht zurück auf die Darmstädter Forschungsgruppe um [[Rudolf Wille (Mathematiker)|Rudolf Wille]], [[Bernhard Ganter]] und [[Peter Burmeister]], in welcher
Die Theorie in ihrer heutigen Form geht zurück auf die Darmstädter Forschungsgruppe um [[Rudolf Wille (Mathematiker)|Rudolf Wille]], [[Bernhard Ganter]] und [[Peter Burmeister]], in der Anfang der 1980er Jahre die Formale Begriffsanalyse entstand. Die mathematischen Grundlagen wurden jedoch bereits von [[Garrett Birkhoff]] in den 1930er Jahren im Rahmen der allgemeinen [[Verbandstheorie]] geschaffen. Vor den Arbeiten der Darmstädter Gruppe gab es bereits Ansätze in verschiedenen französischen Gruppen. Starken Einfluss auf die Entstehung der Formalen Begriffsanalyse hatten Schriften von [[Charles S. Peirce]] und [[Hartmut von Hentig]].

Anfang der 1980er Jahre die Formale Begriffsanalyse entstand. Die mathematischen Grundlagen wurden jedoch bereits von [[Garrett Birkhoff]] in den 1930er Jahren im Rahmen der allgemeinen [[Verbandstheorie]] geschaffen. Vor den Arbeiten der Darmstädter Gruppe gab es bereits Ansätze in verschiedenen französischen Gruppen. Philosophische Fundierungen der Formalen Begriffsanalyse berufen sich insbesondere auf [[Charles S. Peirce]] und [[Hartmut von Hentig]].
FBA findet in vielfältigen Bereichen praktische Anwendung, wie [[Datamining|Data-]] und [[Textmining]], [[Wissensmanagement]], [[Semantic Web]], [[Softwaretechnik|Software Engineering]], [[Wirtschaft]] und [[Biologie]].


FBA findet in vielfältigen Bereichen praktische Anwendung, wie [[Datamining|Data-]] und [[Textmining]], [[Wissensmanagement]], [[Semantic Web]], [[Softwareentwicklung]], [[Wirtschaft]] oder [[Biologie]].


== Motivation und philosophischer Hintergrund ==
== Motivation und philosophischer Hintergrund ==
Zeile 12: Zeile 12:
{{Zitat | Text=Die Restrukturierung der Verbandstheorie ist ein Versuch, Verbindungen zu unserer allgemeinen Kultur wieder zu verstärken, indem die Theorie so konkret wie möglich interpretiert und dadurch eine bessere Kommunikation zwischen Verbandstheoretikern und potentiellen Anwendern der Verbandstheorie gefördert wird. | Autor=Rudolf Wille | Quelle=<ref name="restructuring">Rudolf Wille: ''[http://books.google.de/books?hl=de&lr=&id=gwpq0acO3kgC&oi=fnd&pg=PA314&dq=Wille+Restructuring+Lattice+Theory&ots=zYmNQeCJKb&sig=TyDygU5lU_91iJWIuJbNi2or6Ls#v=onepage&q=Wille%20Restructuring%20Lattice%20Theory&f=false Restructuring lattice theory: An approach based on hierarchies of concepts.]'' Nachdruck in: ICFCA '09: Proceedings of the 7th International Conference on Formal Concept Analysis, Berlin, Heidelberg, 2009, S. 314. Eigene Übersetzung [[Benutzer:Jwollbold|Jwollbold]]; „geistiger Hochleistungssport“: „elaborate mental gymnastics“.</ref>}}
{{Zitat | Text=Die Restrukturierung der Verbandstheorie ist ein Versuch, Verbindungen zu unserer allgemeinen Kultur wieder zu verstärken, indem die Theorie so konkret wie möglich interpretiert und dadurch eine bessere Kommunikation zwischen Verbandstheoretikern und potentiellen Anwendern der Verbandstheorie gefördert wird. | Autor=Rudolf Wille | Quelle=<ref name="restructuring">Rudolf Wille: ''[http://books.google.de/books?hl=de&lr=&id=gwpq0acO3kgC&oi=fnd&pg=PA314&dq=Wille+Restructuring+Lattice+Theory&ots=zYmNQeCJKb&sig=TyDygU5lU_91iJWIuJbNi2or6Ls#v=onepage&q=Wille%20Restructuring%20Lattice%20Theory&f=false Restructuring lattice theory: An approach based on hierarchies of concepts.]'' Nachdruck in: ICFCA '09: Proceedings of the 7th International Conference on Formal Concept Analysis, Berlin, Heidelberg, 2009, S. 314. Eigene Übersetzung [[Benutzer:Jwollbold|Jwollbold]]; „geistiger Hochleistungssport“: „elaborate mental gymnastics“.</ref>}}


Dieses Ziel geht direkt zurück auf Hartmut von Hentig, der 1972 eine Restrukturierung der Wissenschaften forderte, „um sie besser lernbar, gegenseitig verfügbar und allgemeiner (d.h. jenseits der Fachkompetenz) kritisierbar zu machen.“<ref>Hartmut von Hentig: ''Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozeß''. Klett 1972 / Suhrkamp 1974. Zitiert nach Karl Erich Wolff: ''[http://www.fbmn.h-da.de/~wolff/Publikationen/Ordnung_Wille_und_Begriff.doc Ordnung, Wille und Begriff] ([[Microsoft Word|MS Word]]; 2,0&nbsp;MB)'', Ernst Schröder Zentrum für Begriffliche Wissensverarbeitung, Darmstadt 2003.</ref> Somit zielt auch FBA von ihren Ursprüngen her auf Interdisziplinarität und demokratische Kontrolle von Forschung.<ref name="AttrExGeneRegProc">Johannes Wollbold: ''[http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24615/Wollbold/Dissertation.pdf Attribute Exploration of Gene Regulatory Processes] (PDF; 4,6&nbsp;MB)''. Doktorarbeit, Universität Jena 2011, S. 9.</ref>
Dieses Ziel geht direkt zurück auf Hartmut von Hentig, der 1972 eine Restrukturierung der Wissenschaften forderte, „um sie besser lernbar, gegenseitig verfügbar und allgemeiner (d.h. jenseits der Fachkompetenz) kritisierbar zu machen.“<ref>{{Literatur | Autor=Hartmut von Hentig | Titel=Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozeß | TitelErg=Klett 1972 / Suhrkamp 1974. Zitiert nach Karl Erich Wolff: ''[http://www.fbmn.h-da.de/~wolff/Publikationen/Ordnung_Wille_und_Begriff.doc Ordnung, Wille und Begriff] ([[Microsoft Word|MS Word]]; 2,0&nbsp;MB)'', Ernst Schröder Zentrum für Begriffliche Wissensverarbeitung, Darmstadt 2003 | Verlag=Suhrkamp-Taschenbuch-Verlag | Ort=[Frankfurt am Main | Jahr=1974 | ISBN=978-3518067079 | Zugriff=2015-11-14}}</ref> Somit zielt auch FBA von ihren Ursprüngen her auf Interdisziplinarität und demokratische Kontrolle von Forschung.<ref name="AttrExGeneRegProc">{{Internetquelle | url=http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24615/Wollbold/Dissertation.pdf | titel=Attribute Exploration of Gene Regulatory Processes | titelerg=Doktorarbeit, Universität Jena 2011 | seiten=9 | autor=Johannes Wollbold | hrsg=Digitale Bibliothek Thüringen | zugriff=2015-11-14 | sprache=en | format=PDF; 4,6&nbsp;MB}}</ref>


Sie korrigiert den ursprünglichen Ansatz der Verbandstheorie mit der Entstehung der [[Formale Logik|Formalen Logik]] im 19. Jahrhundert. Während ein Begriff als einstelliges [[Prädikat (Logik)|Prädikat]] auf seinen Umfang reduziert wurde (ähnlich auch in der [[Modelltheorie]]), sollte nun durch Berücksichtigung auch des Inhalts die Begriffslehre wieder weniger abstrakt werden.<ref name="restructuring" /> Damit orientiert sich FBA an den Kategorien [[Extension und Intension]] der [[Linguistik]] und klassischen [[Begriffslogik]]. Ihr Begriffsverständnis entspricht auch dem der [[Begriff#Terminologische_Festlegungen_in_DIN-Normen|DIN-Normen]] 2330 ''Begriffe und Benennungen'', DIN 2331 ''Begriffssysteme und ihre Darstellung'' sowie DIN 2342 ''Begriffe der Terminologielehre''.<ref>Ganter, Wille: ''Formale Begriffsanalyse'', 1996, S. 1.</ref>
Sie korrigiert den ursprünglichen Ansatz der Verbandstheorie mit der Entstehung der [[Formale Logik|Formalen Logik]] im 19. Jahrhundert. Während ein Begriff als einstelliges [[Prädikat (Logik)|Prädikat]] auf seinen Umfang reduziert wurde (ähnlich auch in der [[Modelltheorie]]), sollte nun durch Berücksichtigung auch des Inhalts die Begriffslehre wieder weniger abstrakt werden.<ref name="restructuring" /> Damit orientiert sich FBA an den Kategorien [[Extension und Intension]] der [[Linguistik]] und klassischen [[Begriffslogik]]. Ihr Begriffsverständnis entspricht auch dem der [[Begriff#Terminologische_Festlegungen_in_DIN-Normen|DIN-Normen]] 2330 ''Begriffe und Benennungen'', DIN 2331 ''Begriffssysteme und ihre Darstellung'' sowie DIN 2342 ''Begriffe der Terminologielehre''.<ref>Ganter, Wille: ''Formale Begriffsanalyse'', 1996, S. 1.</ref>
Zeile 25: Zeile 25:
=== Formale Kontexte und Formale Begriffe ===
=== Formale Kontexte und Formale Begriffe ===


Gegeben seien zwei Mengen <math>G,\, M</math> und eine [[Relation]] <math>I \subseteq G\times M</math>. Das Tripel <math>\mathbb{K} = (G, M, I)</math> wird dann als ''formaler Kontext''<ref name="GW96Basics">Bernhard Ganter, Rudolf Wille: ''Formale Begriffsanalyse;'' Springer, Heidelberg, 1996, Kap. 1 „Begriffsverbände von Kontexten“. ISBN 3-540-60868-0.</ref> bezeichnet, <math>G</math> als seine ''Gegenstandsmenge'' und <math>M</math> als seine ''Merkmalsmenge''; für einen Gegenstand <math>g \in G</math> und ein Merkmal <math>m \in M</math> bedeutet <math>(g, m) \in I</math> „der Gegenstand <math>g</math> ''hat'' das Merkmal <math>m</math>“. Oft wird auch <math>g\mathrel{I}m</math> statt <math>(g,m) \in I</math> geschrieben. Die Menge <math>I</math> wird als ''Inzidenzrelation'' des formalen Kontextes bezeichnet.
Gegeben seien zwei Mengen <math>G,\, M</math> und eine [[Relation]] <math>I \subseteq G\times M</math>. Das Tripel <math>\mathbb{K} = (G, M, I)</math> wird dann als ''formaler Kontext''<ref name="GW96Basics">{{Literatur | Autor=Bernhard Ganter, Rudolf Wille | Titel=Kap. 1 „Begriffsverbände von Kontexten“ | Sammelwerk=Formale Begriffsanalyse. Mathematische Grundlagen | Verlag=Springer | Ort=Heidelberg | Jahr=1996 | ISBN=978-3-642-61450-7 | Zugriff=2015-11-14}}</ref> bezeichnet, <math>G</math> als seine ''Gegenstandsmenge'' und <math>M</math> als seine ''Merkmalsmenge''; für einen Gegenstand <math>g \in G</math> und ein Merkmal <math>m \in M</math> bedeutet <math>(g, m) \in I</math> „der Gegenstand <math>g</math> ''hat'' das Merkmal <math>m</math>“. Oft wird auch <math>g\mathrel{I}m</math> statt <math>(g,m) \in I</math> geschrieben. Die Menge <math>I</math> wird als ''Inzidenzrelation'' des formalen Kontextes bezeichnet.


Sind die Mengen <math>G</math> und <math>M</math> endlich, so lassen sich formale Kontexte gut in Form von „Kreuztabellen“ darstellen. Man beachte dabei, dass die Gegenstände und Merkmale in dieser Darstellung willkürlich geordnet werden können. Diese Ordnung ist dann aber nicht Teil des formalen Kontextes, sondern nur seiner Darstellung.
Sind die Mengen <math>G</math> und <math>M</math> endlich, so lassen sich formale Kontexte gut in Form von „Kreuztabellen“ darstellen. Man beachte dabei, dass die Gegenstände und Merkmale in dieser Darstellung willkürlich geordnet werden können. Diese Ordnung ist dann aber nicht Teil des formalen Kontextes, sondern nur seiner Darstellung.
Zeile 87: Zeile 87:
Ist <math>A \to B</math> eine Implikation von <math>\mathbb{K}</math>, so ''folgt'' <math>A \to B</math> aus <math>\mathcal{L}</math>, falls <math>B \subseteq \mathcal{L}(A)</math> gilt. Dies ist äquivalent dazu, dass in jedem formalen Kontext, in dem alle Implikationen aus <math>\mathcal{L}</math> gelten, auch stets die Implikation <math>A \to B</math> gilt.
Ist <math>A \to B</math> eine Implikation von <math>\mathbb{K}</math>, so ''folgt'' <math>A \to B</math> aus <math>\mathcal{L}</math>, falls <math>B \subseteq \mathcal{L}(A)</math> gilt. Dies ist äquivalent dazu, dass in jedem formalen Kontext, in dem alle Implikationen aus <math>\mathcal{L}</math> gelten, auch stets die Implikation <math>A \to B</math> gilt.


Eine ''Basis'' für <math>\mathbb{K}</math> ist dann eine Menge <math>\mathcal{L}</math> von gültigen Implikationen von <math>\mathbb{K}</math>, so dass jede ([[semantisch]]) gültige Implikation aus <math>\mathbb{K}</math> bereits aus <math>\mathcal{L}</math> folgt, durch Anwendung geeigneter [[syntaktisch]]er [[Inferenzregel]]n wie der ''Armstrong-Regeln''<ref>W.W. Armstrong: Dependency structures of data base relationships. ''IFIP congress'', Genf 1974, S. 580 - 583.</ref>. Die in diesem neuen Sinn abgeschlossene Menge aller Implikationen von <math>\mathbb{K}</math> ist eine [[Theorie#Definition|Theorie]], da sie außerdem laut Konstruktion zum Beispiel bezüglich des zugrunde liegenden Kontexts [[Erfüllbarkeit|erfüllbar]] ist.
Eine ''Basis'' für <math>\mathbb{K}</math> ist dann eine Menge <math>\mathcal{L}</math> von gültigen Implikationen von <math>\mathbb{K}</math>, so dass jede ([[semantisch]]) gültige Implikation aus <math>\mathbb{K}</math> bereits aus <math>\mathcal{L}</math> folgt, durch Anwendung geeigneter [[syntaktisch]]er [[Inferenzregel]]n wie der ''Armstrong-Regeln''<ref>{{Literatur | Autor=W.W. Armstrong | Titel=Dependency structures of data base relationships | Sammelwerk=[[International Federation for Information Processing|IFIP Congress]] | Seiten=580 - 583 | Verlag= | Ort=Genf | Jahr=1974 | ISBN= | Zugriff=2015-11-14}}</ref>. Die in diesem neuen Sinn abgeschlossene Menge aller Implikationen von <math>\mathbb{K}</math> ist eine [[Theorie#Definition|Theorie]], da sie außerdem laut Konstruktion zum Beispiel bezüglich des zugrunde liegenden Kontexts [[Erfüllbarkeit|erfüllbar]] ist.


Die Basis heißt ''irredundant'', falls sie <math>\subseteq</math>-minimal mit dieser Eigenschaft ist. Ein Beispiel für eine irredundante Basis ist die ''kanonische Basis'' (siehe auch [[Merkmalexploration#Mathematische Grundlagen|Merkmalexploration]]), die darüber hinaus die Eigenschaft hat, auch minimal bezüglich der Größe der Basis zu sein.
Die Basis heißt ''irredundant'', falls sie <math>\subseteq</math>-minimal mit dieser Eigenschaft ist. Ein Beispiel für eine irredundante Basis ist die ''kanonische Basis'' (siehe auch [[Merkmalexploration#Mathematische Grundlagen|Merkmalexploration]]), die darüber hinaus die Eigenschaft hat, auch minimal bezüglich der Größe der Basis zu sein.
Zeile 104: Zeile 104:
== Anwendungen ==
== Anwendungen ==


Die Formale Begriffsanalyse lässt sich als qualitative Methode zur Datenanalyse einsetzen, etwa in Data- und Textmining, Wissensmanagement, Semantic Web, Softwareentwicklung, Wirtschaft oder Biologie.<ref>Bernhard Ganter, Gerd Stumme, Rudolf Wille (Hg.): ''Formal Concept Analysis. Foundations and Applications''; Springer, 2005, ISBN 3-540-27891-5. [http://books.google.de/books?id=nEh4D4e88NwC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Online-Vorschau]</ref><ref>Konferenzbände wie zur ''[http://www.springer.com/computer/ai/book/978-3-642-20513-2 International Conference on Formal Concept Analysis (ICFCA 2011)]'' oder zu ''[http://cla.inf.upol.cz/papers.html Concept Lattices and Their Applications (CLA)]'' mit [[Open Access]]-Artikeln aller Konferenzen seit 2004.</ref> Eine direkte Anwendung ist es, die ursprünglichen Daten anders zu strukturieren und zu visualisieren.
Die Formale Begriffsanalyse lässt sich als qualitative Methode zur Datenanalyse einsetzen, etwa in Data- und Textmining, Wissensmanagement, Semantic Web, Softwareentwicklung, Wirtschaft oder Biologie.<ref name="FCAFaA">{{Literatur | Herausgeber=Bernhard Ganter, Gerd Stumme, Rudolf Wille | Titel=Formal Concept Analysis. Foundations and Applications | Verlag=Springer Science & Business Media | Ort= | Jahr=2005 | ISBN=978-354027891-7 | Online=[http://books.google.de/books?id=nEh4D4e88NwC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Online-Vorschau] | Zugriff=2015-11-14}}</ref><ref>Konferenzbände wie zur<br />{{Literatur | Herausgeber=Petko Valtchev, Robert Jäschke | Titel=Formal Concept Analysis 9th International Conference, ICFCA 2011, Nicosia, Cyprus, May 2-6, 2011, Proceedings | Verlag=Springer-Verlag | Ort=Berlin, Heidelberg | Jahr=2011 | ISBN=978-3-642-20513-2 | Sprache=en | Online=[http://www.springer.com/us/book/9783642205132 Inhaltsangabe] | Zugriff=2015-11-14}}oder zu<br />{{Internetquelle | url=http://cla.inf.upol.cz/papers.html | titel=CLA: Concept Lattices and Their Applications | titelerg=Conference Homepage mit [[Open Access]]-Artikeln aller Konferenzen seit 2004 | hrsg=CLA | zugriff=2015-11-14 | sprache=en | format=text/html}}</ref> Eine direkte Anwendung ist es, die ursprünglichen Daten anders zu strukturieren und zu visualisieren.


== Literatur ==
== Literatur ==

Version vom 14. November 2015, 23:06 Uhr

Formale Begriffsanalyse (FBA) ist ein Teil der mathematischen Ordnungstheorie. Ihre ursprüngliche Motivation ist die konkrete Darstellung vollständiger Verbände und deren Eigenschaften mittels formaler Kontexte, um Eigenschaften dieser Verbände als Eigenschaften der zugeordneten Kontexte zu studieren. Wegen der englischen Übersetzung Formal Concept Analysis findet man zuweilen im Deutschen auch die eigentlich falsche Bezeichnung Formale Konzeptanalyse.

Die Theorie in ihrer heutigen Form geht zurück auf die Darmstädter Forschungsgruppe um Rudolf Wille, Bernhard Ganter und Peter Burmeister, in der Anfang der 1980er Jahre die Formale Begriffsanalyse entstand. Die mathematischen Grundlagen wurden jedoch bereits von Garrett Birkhoff in den 1930er Jahren im Rahmen der allgemeinen Verbandstheorie geschaffen. Vor den Arbeiten der Darmstädter Gruppe gab es bereits Ansätze in verschiedenen französischen Gruppen. Starken Einfluss auf die Entstehung der Formalen Begriffsanalyse hatten Schriften von Charles S. Peirce und Hartmut von Hentig.

FBA findet in vielfältigen Bereichen praktische Anwendung, wie Data- und Textmining, Wissensmanagement, Semantic Web, Software Engineering, Wirtschaft und Biologie.


Motivation und philosophischer Hintergrund

Im Artikel Restructuring Lattice Theory (1982), der die Formale Begriffsanalyse als Disziplin begründete, wird als Motivation das Unbehagen an der Verbandstheorie und der Reinen Mathematik allgemein genannt: Die oft durch „geistigen Hochleistungssport“ erreichte Produktion theoretischer Resultate sei beeindruckend, die Verknüpfungen zwischen benachbarten Gebieten und sogar Teilen einer Theorie würden jedoch schwächer.

„Die Restrukturierung der Verbandstheorie ist ein Versuch, Verbindungen zu unserer allgemeinen Kultur wieder zu verstärken, indem die Theorie so konkret wie möglich interpretiert und dadurch eine bessere Kommunikation zwischen Verbandstheoretikern und potentiellen Anwendern der Verbandstheorie gefördert wird.“

Rudolf Wille: [1]

Dieses Ziel geht direkt zurück auf Hartmut von Hentig, der 1972 eine Restrukturierung der Wissenschaften forderte, „um sie besser lernbar, gegenseitig verfügbar und allgemeiner (d.h. jenseits der Fachkompetenz) kritisierbar zu machen.“[2] Somit zielt auch FBA von ihren Ursprüngen her auf Interdisziplinarität und demokratische Kontrolle von Forschung.[3]

Sie korrigiert den ursprünglichen Ansatz der Verbandstheorie mit der Entstehung der Formalen Logik im 19. Jahrhundert. Während ein Begriff als einstelliges Prädikat auf seinen Umfang reduziert wurde (ähnlich auch in der Modelltheorie), sollte nun durch Berücksichtigung auch des Inhalts die Begriffslehre wieder weniger abstrakt werden.[1] Damit orientiert sich FBA an den Kategorien Extension und Intension der Linguistik und klassischen Begriffslogik. Ihr Begriffsverständnis entspricht auch dem der DIN-Normen 2330 Begriffe und Benennungen, DIN 2331 Begriffssysteme und ihre Darstellung sowie DIN 2342 Begriffe der Terminologielehre.[4]

Klarheit von Begriffen wird im Sinn von Charles S. Peirce's Pragmatischer Maxime dadurch angestrebt, dass beobachtbare, elementare Eigenschaften der subsumierten Gegenstände entfaltet werden.[3] In seiner Spätphilosophie ging Peirce davon aus, dass logisches Denken auf das Erfassen von Wirklichkeit zielt, durch den Dreischritt Begriff, Urteil und Schluss. Mathematik abstrahiert logisches Denken, entwickelt Formen möglicher Realität und kann daher rationale Kommunikation unterstützen. Rudolf Wille definiert vor diesem Hintergrund:

„Ziel und Bedeutung Formaler Begriffsanalyse als mathematische Theorie von Begriffen und Begriffshierarchien ist es, die rationale Kommunikation von Menschen zu unterstützen, indem sie mathematisch geeignete Begriffsstrukturen entwickelt, die logisch aktiviert werden können.“

Rudolf Wille: [5]

Mathematische Grundlagen

Das Hauptziel der Formalen Begriffsanalyse ist die Darstellung von vollständigen Verbänden mittels formaler Kontexte. Darüber hinaus erlaubt sie aber auch umgekehrt die Untersuchung von Daten in Form formaler Kontexte mit Mitteln der Ordnungstheorie. Die dafür grundlegenden Definitionen sollen in diesem Abschnitt diskutiert werden.

Formale Kontexte und Formale Begriffe

Gegeben seien zwei Mengen und eine Relation . Das Tripel wird dann als formaler Kontext[6] bezeichnet, als seine Gegenstandsmenge und als seine Merkmalsmenge; für einen Gegenstand und ein Merkmal bedeutet „der Gegenstand hat das Merkmal “. Oft wird auch statt geschrieben. Die Menge wird als Inzidenzrelation des formalen Kontextes bezeichnet.

Sind die Mengen und endlich, so lassen sich formale Kontexte gut in Form von „Kreuztabellen“ darstellen. Man beachte dabei, dass die Gegenstände und Merkmale in dieser Darstellung willkürlich geordnet werden können. Diese Ordnung ist dann aber nicht Teil des formalen Kontextes, sondern nur seiner Darstellung.

Ein formaler Kontext zu Eigenschaften der Zahlen 1-10.

Ist eine Menge von Gegenständen eines formalen Kontextes , so bezeichnet man mit

die Menge der gemeinsamen Merkmale der Gegenstände in . Entsprechend definiert wird für eine Menge von Merkmalen von die Menge

aller Gegenstände, die alle Merkmale aus besitzen. Die Menge und werden als die Ableitungen der entsprechenden Mengen und bezeichnet und die Funktionen, welche beide mit benannt sind, Ableitungsoperatoren von genannt.

Die Ableitungsoperatoren erfüllen eine Reihe von sehr grundlegenden Eigenschaften. Sind Mengen von Gegenständen und Mengen von Merkmalen, so gilt

  • und dual ,
  • und dual ,
  • und ,
  • .

Tatsächlich definieren damit die Ableitungsoperatoren eine antitone Galoisverbindung zwischen den Potenzmengenverbänden der Gegenstandsmenge und der Merkmalmenge. Umgekehrt lässt sich jede solche Galoisverbindung zwischen Potenzmengenverbänden als Paar von Ableitungsoperatoren eines formalen Kontextes darstellen.

Zu einem formalen Kontext heißt nun ein Paar ein formaler Begriff[6] von , falls

  • eine Menge von Gegenständen von ist,
  • eine Menge von Merkmalen von ist,
  • und
  • gilt.

Die Menge wird dann Umfang und die Menge Inhalt des Begriffes genannt. Die Menge aller Begriffe wird mit bezeichnet. Stellt man formale Kontexte als Kreuztabellen dar, so lassen sich formale Begriffe - bei geeigneter Ordnung der Gegenstände und Merkmale - als maximale, vollständig gefüllte Rechtecke in dieser Kreuztabelle verstehen.

Sind nun , so lässt sich mit

eine Halbordnung auf definieren. Diese Ordnung macht dann die Struktur zu einem vollständigen Verband. Tatsächlich ist umgekehrt nach dem Hauptsatz der Formalen Begriffsanalyse jeder vollständige Verband ordnungsisomorph zu einem Begriffsverband.

Begriffsverband zum obigen Zahlenkontext.

Begriffsverbände können als Ordnungsdiagramme (Liniendiagramme) dargestellt werden und entfalten so die Daten in ihrer Struktur und ihren Zusammenhängen. Die Gegenstände haben dabei alle (durch Kanten verbundene) darüber stehenden Merkmale; in nebenstehendem Beispiel ist 4 gerade, zusammengesetzt und quadratisch.

Mathematisch genauer kann zunächst die vereinfachte Beschriftung von Begriffsverbänden begründet werden. Betrachtet man für einen Gegenstand die Menge aller Begriffe, die in ihrem Umfang haben, so hat diese Menge einen Hauptfilter im Begriffsverband. Daher wird nur unterhalb des kleinsten Begriffs, der im Umfang enthält, der Gegenstand notiert. Dual dazu wird oberhalb des größten Begriffs, der ein gegebenes Merkmal im Inhalt besitzt, das Merkmal notiert. Ein Begriff im Ordnungsdiagramm hat also genau dann einen Gegenstand in seinem Umfang, wenn er oberhalb des Begriffes liegt, der mit dem Gegenstand beschriftet ist. Entsprechend hat ein Begriff im Ordnungsdiagramm ein Merkmal in seinem Inhalt, wenn er unterhalb des Begriffes liegt, der mit dem Merkmal beschriftet ist.

Hauptsatz der Formalen Begriffsanalyse

Es sei ein formaler Kontext und sein Begriffsverband. Man kann für Gegenstände und Merkmale dann die Begriffe

betrachten. Es wird der Gegenstandsbegriff von und der Merkmalsbegriff von genannt. Weiterhin gilt

Ist nun ein vollständiger Verband, so ist genau dann isomorph zu , wenn es Abbildungen gibt derart, dass

gilt. Insbesondere ist isomorph zu .

Implikationentheorie Formaler Kontexte

Für einen formalen Kontext kann seine Implikationentheorie untersucht werden. Dabei ist eine Implikation von einfach ein Paar mit , was meist mit geschrieben wird. Man sagt, dass in gilt, wenn jeder Gegenstand, der alle Merkmale aus besitzt, auch alle Merkmale aus besitzt, wenn also gilt. Diese Bedingung ist äquivalent dazu, dass gilt.

Ist eine Menge von Implikationen von und ist , so bezeichnet man mit die kleinste Menge, die enthält und abgeschlossen ist unter . Dabei heißt eine Menge abgeschlossen unter , falls für alle Implikationen stets oder gilt, wenn also stets impliziert. Man sieht dann, dass die Abbildung ein Hüllenoperator auf der Potenzmenge von ist.

Ist eine Implikation von , so folgt aus , falls gilt. Dies ist äquivalent dazu, dass in jedem formalen Kontext, in dem alle Implikationen aus gelten, auch stets die Implikation gilt.

Eine Basis für ist dann eine Menge von gültigen Implikationen von , so dass jede (semantisch) gültige Implikation aus bereits aus folgt, durch Anwendung geeigneter syntaktischer Inferenzregeln wie der Armstrong-Regeln[7]. Die in diesem neuen Sinn abgeschlossene Menge aller Implikationen von ist eine Theorie, da sie außerdem laut Konstruktion zum Beispiel bezüglich des zugrunde liegenden Kontexts erfüllbar ist.

Die Basis heißt irredundant, falls sie -minimal mit dieser Eigenschaft ist. Ein Beispiel für eine irredundante Basis ist die kanonische Basis (siehe auch Merkmalexploration), die darüber hinaus die Eigenschaft hat, auch minimal bezüglich der Größe der Basis zu sein.

Es gilt, dass eine Menge von Implikationen genau dann eine Basis eines Kontextes ist, wenn die Menge der unter abgeschlossenen Mengen genau die der Inhalte von ist.

Merkmalexploration

Es ist möglich, die Implikationentheorie eines bestimmten Themengebietes mit Hilfe eines formalen Kontextes darzustellen. Dies bedeutet insbesondere, dass man dies mit Hilfe einer ausreichenden Menge von Beispielen tun kann, die dann die Gegenstände des formalen Kontextes werden. Theoretisch kann solch eine Menge von Beispielen von einem menschlichen Experten oder auch einer Maschine angegeben werden.

Dabei entsteht allerdings das Problem, dass weder von vornherein garantiert ist, dass eine ausreichende Menge von Beispielen angegeben ist, noch, ob nicht einige generierte Beispiele redundant sind, da bereits gegebene Beispiele ausreichen. Unter den Gesichtspunkten, dass die Generierung guter Beispiele schwierig ist, die Befragung von Experten oder gar neue Experimente teuer sind, und Literatursuche oder Algorithmen aufwendig werden können, ist dies ein ernstzunehmendes Problem.

Abhilfe kann hier der Algorithmus der Merkmalexploration schaffen. Ausgehend von einer bereits bekannten Menge von Implikationen und einer bereits bekannten Menge von Beispielen aus dem Themengebiet schlägt der Algorithmus Implikationen vor, die dann von einem Experten (menschlich oder nicht) akzeptiert oder zurückgewiesen werden können. Dabei soll eine Implikation genau dann akzeptiert werden, wenn diese im besagten Themengebiet gültig ist. Wird eine Implikation zurückgewiesen, so muss der Experte ein Gegenbeispiel erzeugen, das dann von einem Experten (menschlich oder nicht) akzeptiert oder zurückgewiesen werden kann. Dabei soll eine Implikation genau dann akzeptiert werden, wenn diese im besagten Themengebiet gültig ist. Durch ein akzeptiertes Gegenbeispiel, wird die Implikation widerlegt und somit eine kleinstmögliche Menge von akzeptierten Implikationen generiert, die am Ende das Themengebiet vollständig beschreibt. Darüber hinaus wird auch die Menge von Beispielen vervollständigt.

Anwendungen

Die Formale Begriffsanalyse lässt sich als qualitative Methode zur Datenanalyse einsetzen, etwa in Data- und Textmining, Wissensmanagement, Semantic Web, Softwareentwicklung, Wirtschaft oder Biologie.[8][9] Eine direkte Anwendung ist es, die ursprünglichen Daten anders zu strukturieren und zu visualisieren.

Literatur

  • Bernhard Ganter, Rudolf Wille: Formale Begriffsanalyse. Springer, 1996, ISBN 3-540-60868-0.
  • Bernhard Ganter, Gerd Stumme, Rudolf Wille (Hrsg.): Formal Concept Analysis. Foundations and Applications. Springer, 2005, ISBN 3-540-27891-5 (Online-Vorschau).
  • R. Missaoui, Jürg Schmid: Formal Concept Analysis. Springer, 2006, ISBN 3-540-32203-5.
  • Raoul Medina, Sergei Obiedkov (Hrsg.): Formal Concept Analysis. 6th International Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008. Springer, Heidelberg 2008, ISBN 978-3-540-78136-3 (Online-Version – LNCS/LNAI 4933).
  • Bernhard Ganter: Diskrete Mathematik: Geordnete Mengen. Springer Spektrum, 2013, ISBN 978-3-642-37499-9, S. 1–192.

Weblinks

Einzelnachweise

  1. a b Rudolf Wille: Restructuring lattice theory: An approach based on hierarchies of concepts. Nachdruck in: ICFCA '09: Proceedings of the 7th International Conference on Formal Concept Analysis, Berlin, Heidelberg, 2009, S. 314. Eigene Übersetzung Jwollbold; „geistiger Hochleistungssport“: „elaborate mental gymnastics“.
  2. Hartmut von Hentig: Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozeß. Klett 1972 / Suhrkamp 1974. Zitiert nach Karl Erich Wolff: Ordnung, Wille und Begriff (MS Word; 2,0 MB), Ernst Schröder Zentrum für Begriffliche Wissensverarbeitung, Darmstadt 2003. Suhrkamp-Taschenbuch-Verlag, [Frankfurt am Main 1974, ISBN 978-3-518-06707-9.
  3. a b Johannes Wollbold: Attribute Exploration of Gene Regulatory Processes. (PDF; 4,6 MB) Doktorarbeit, Universität Jena 2011. Digitale Bibliothek Thüringen, S. 9, abgerufen am 14. November 2015 (englisch).
  4. Ganter, Wille: Formale Begriffsanalyse, 1996, S. 1.
  5. Rudolf Wille: Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies. In: B. Ganter et al.: Formal Concept Analysis. Foundations and Applications, 2005, S. 1f. Eigene Übersetzung Jwollbold.
  6. a b Bernhard Ganter, Rudolf Wille: Kap. 1 „Begriffsverbände von Kontexten“. In: Formale Begriffsanalyse. Mathematische Grundlagen. Springer, Heidelberg 1996, ISBN 978-3-642-61450-7.
  7. W.W. Armstrong: Dependency structures of data base relationships. In: IFIP Congress. Genf 1974, S. 580 - 583.
  8. Bernhard Ganter, Gerd Stumme, Rudolf Wille (Hrsg.): Formal Concept Analysis. Foundations and Applications. Springer Science & Business Media, 2005, ISBN 978-3-540-27891-7 (Online-Vorschau [abgerufen am 14. November 2015]).
  9. Konferenzbände wie zur
    Petko Valtchev, Robert Jäschke (Hrsg.): Formal Concept Analysis 9th International Conference, ICFCA 2011, Nicosia, Cyprus, May 2-6, 2011, Proceedings. Springer-Verlag, Berlin, Heidelberg 2011, ISBN 978-3-642-20513-2 (englisch, Inhaltsangabe [abgerufen am 14. November 2015]).oder zu
    CLA: Concept Lattices and Their Applications. (text/html) Conference Homepage mit Open Access-Artikeln aller Konferenzen seit 2004. CLA, abgerufen am 14. November 2015 (englisch).