Geschwindigkeitsfilter

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein Geschwindigkeitsfilter, nach seinem Entwickler Wilhelm Wien auch Wienfilter genannt, dient hauptsächlich dazu, aus dem Teilchenstrahl einer Ionenquelle nur diejenigen Teilchen den Filter passieren zu lassen, die eine bestimmte Geschwindigkeit besitzen, während alle übrigen im Filter „hängenbleiben“ – anders gesagt, kann man damit einen Teilchenstrom mit nur einer genau definierten Geschwindigkeit „präparieren“, aber auch die Geschwindigkeit unbekannter geladener Teilchen bestimmen.

Aufbau und Funktionsweise[Bearbeiten]

Qualitative Funktionsweise des Geschwindigkeitfilters
Kräftegleichgewicht der bewegten Ladung

Elektrisch geladene Teilchen werden durch einen Plattenkondensator geschickt, der selbst vollständig innerhalb eines homogenen Magnetfelds liegt. Alle gerichteten Parameter dieser Anordnung (das vom Kondensator erzeugte elektrische Feld, das Magnetfeld und die Bahn des geladenen Teilchens) stehen dabei paarweise senkrecht aufeinander.

Wenn im nebenstehenden Bild positiv geladene Teilchen von links kommen, werden sie vom elektrischen Feld nach unten abgelenkt, vom Magnetfeld nach oben. Sind beide Kräfte gleich groß, ist die Gesamtkraft Null und die Teilchen fliegen geradeaus. Da die Lorentzkraft proportional zur Geschwindigkeit ist, bleiben nur Teilchen einer bestimmten Geschwindigkeit im Filter auf einer geradlinigen Bahn, alle anderen Teilchen werden nach oben oder unten abgelenkt und lassen sich durch eine Blende am Ausgang abfangen.

Da beide Kräfte nur auf geladene Teilchen wirken, müssen die Teilchen ggf. zunächst (z. B. durch einen Lichtbogen) ionisiert werden.[1]

Mathematische Betrachtung[Bearbeiten]

Die Gewichtskraft des Teilchens kann in allen Berechnungen vernachlässigt werden.

Im Folgenden wird die Bedingung dafür hergeleitet, dass das Teilchen nicht abgelenkt wird mit:

  • B: magnetische Flussdichte
  • E: Elektrische Feldstärke
  • q: Ladung
  • v: Geschwindigkeit

Skalare Betrachtung[Bearbeiten]

Ein Kräftegleichgewicht und damit eine geradlinige Durchquerung des Filters liegt vor, wenn für die elektrische Kraft F_\text{C} und die magnetische Kraft (Lorentzkraft) F_\text{L} gilt:

\,F_\text{C} = F_\text{L}
q \, E = q \, v \, B
 E = v \, B

Somit ergibt sich die Durchlassgeschwindigkeit:

 v_\text{0} = \frac{E}{B}= \frac{\left| \vec E \right|}{\left|\vec B \right|}

Mit Verwendung des Vektorprodukts[Bearbeiten]

Für die Bewegung im Feld gilt mit Hilfe des zweiten newtonschen Gesetzes:

\sum \vec F = m \, \dot {\vec v} = m \,  \vec a = q \, (\vec E + \vec v \times \vec B)

Nichtablenkung bedeutet \sum \vec F = m \, \vec a = 0 .

q \, \vec E = -q \, (\vec v \times \vec B)

Stehen Geschwindigkeit, elektrisches Feld und Magnetfeld, wie gefordert, jeweils senkrecht zueinander, gilt:

v_\text{0} = \frac{\left| \vec E \right|}{\left|\vec B \right|}

Einsatzbereiche[Bearbeiten]

Einsatz eines Wienfilters in einem Massenspektrometer

Um Teilchen einer bestimmten Geschwindigkeit herauszufiltern, müssen das magnetische und das elektrische Feld also entsprechend angepasst werden. Von den Teilchen, die bei einer bestimmten magnetischen Flussdichte bzw. elektrischer Feldstärke den Wienfilter passieren können, kennt man durch obige Beziehung die Geschwindigkeit.

Masse und Ladung der Teilchen spielen für die Funktion des Filters keine Rolle, wie aus den Formeln ersichtlich.

Bei einem Massenspektrometer selektiert in der Regel ein Geschwindigkeitsfilter aus einem Ionenstrahl Teilchen einer bestimmten (damit bekannten) Geschwindigkeit heraus, um dann (z. B. mittels eines Magnetfeldes) die verschiedenen Massen zu trennen.

Geschwindigkeitsfilter werden häufig an Teilchenbeschleunigern eingesetzt. Zusammen mit anderen elektrostatischen und magnetischen Filtern bilden sie ein oft recht komplexes System zur Auswahl von Teilchen bestimmter Masse, Ladung und Geschwindigkeit.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Vorlesungsskript an der Uni-GH Essen (S. 13) (PDF; 1,7 MB)