Optokoppler

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 17. Oktober 2016 um 12:45 Uhr durch 84.131.101.67 (Diskussion). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Schematischer Aufbau von Optokopplern
oben: Face to face, unten: coplanar mit galvanischer Isolierung

Ein Optokoppler ist ein Bauelement der Optoelektronik und dient zur Übertragung eines Signals zwischen zwei galvanisch getrennten Stromkreisen. Er besteht üblicherweise aus einer Leuchtdiode (LED) oder Laserdiode (LD) als optischem Sender und einer Photodiode oder einem Fototransistor als optischem Empfänger. Das Sende- und das Empfängerbauelement sind untereinander optisch gekoppelt in einem von außen lichtundurchlässigen Gehäuse untergebracht.

Mit Optokopplern können sowohl digitale, als auch analoge Signale übertragen werden. Von Optokopplern zu unterscheiden sind Halbleiterrelais, welche als Bauteil zur galvanischen Trennung einen Optokoppler enthalten können und primär in der elektrischen Energietechnik eingesetzt werden. Auch sogenannte Gabelkoppler und Lichtschranken unterscheiden sich von Optokopplern, da sie über kein von außen lichtundurchlässiges Gehäuse verfügen und einen anderen Anwendungszweck haben.

Aufbau

Aufgeschnittene Optokoppler vom Typ 4N25

Seit etwa 1972 werden Optokoppler als elektronisches Bauelement in Gehäusen angeboten, die denen von Chipgehäusen gleichen, wie beispielsweise das Dual in-line package (DIP). Für hohe Isolationsspannungen ab etwa 4 kV werden auch langgestreckte Gehäusebauformen gefertigt. Zur sicheren Netztrennung in Schaltnetzteilen werden Optokoppler auch mit weiter auseinanderliegen Anschlusspins gefertigt, um auf Leiterplatten die erforderliche Kriechstrecke von in der Regel 8 mm zwischen Primär- und Sekundärseite einhalten zu können.

Beim inneren Aufbau unterscheidet man zwischen dem englisch Face-to-face design und dem englisch Coplanar design. Im ersten Fall stehen sich Sender und Empfänger direkt gegenüber, bei der zweiten Variante befinden sich Sender und Empfänger auf einer Ebene. Hier wird der Lichtstrahl ähnlich dem Prinzip eines Lichtwellenleiters durch Reflexion übertragen.

Als Sender werden Leuchtdioden oder Laserdioden verwendet, die im optimalen Empfangsbereich von Silicium-basierten Empfängern arbeiten (um 850 nm Wellenlänge). Als Empfänger werden Phototransistoren oder Photodioden eingesetzt. So genannte PhotoMOS-Relais verwenden eine Serienschaltung von Fotodioden, die als Photoelement, also im photovoltaischen Bereich, betrieben werden, um mit der Spannung MOSFET zu schalten; siehe auch Halbleiterrelais. Damit können kleine und große Gleich- und Wechselströme geschaltet werden.

Optokoppler können mit Thyristoren oder Triacs zusammen geschaltet werden. Damit erhält man ein Halbleiterrelais (englisch Solid State Relais) zum Schalten von Netzwechselspannung.

Kennwerte

Schaltsymbol, mit Fototransistor als Ausgang
Funktionsprinzip

Bei analogen Optokopplern gibt das Gleichstrom-Übertragungsverhältnis (englisch current transfer ratio, CTR) das Verhältnis zwischen Ein- und Ausgangsstrom bei Gleichstromsignalen oder niedrigen Signalfrequenzen an. Die Werte liegen je nach Empfänger zwischen 0,1...0,5 % (Photodiode), 2...120 % (Phototransistor) und 1.000...15.000 % (mit Darlington-Transistor)[1]. Dieser Wert ist insbesondere bei Einsatz von Phototransistoren erheblich stromabhängig. Weiterhin ist er temperaturabhängig und verringert sich mit der Alterung des Bauelements. Eine Reduktion der Helligkeit um mehr als 50% bei der Leuchtdiode infolge Alterung gilt als Fehler.[2] Bei digitalen Optokopplern wird kein CTR angegeben, sondern ein LED-Mindeststrom, der zum Pegelwechsel am Ausgang erforderlich ist.

Die Isolationsspannung ist abhängig von Abstand und Anordnung von Sender und Empfänger, dem Isolationswerkstoff und dem Abstand der Anschlüsse. Übliche Isolationsspannungen sind 200 V, 500 V, 1,5 kV, 2,5 kV, 4 kV oder 5 kV, in Sonderfällen bis zu 25 kV.

Der Isolationswiderstand zwischen dem Eingang und dem Ausgang ist sehr hoch und beträgt bis zu 1013 Ω.

Die Grenzfrequenz ist die höchste Arbeitsfrequenz, bei der ein Optokoppler noch arbeiten kann. Je nach Typ liegt dieser Kennwert zwischen einigen kHz und einigen GHz. Optokoppler mit Fototransistoren haben eine Grenzfrequenz im unteren Bereich, im Wesentlichen durch die langsamen Fototransistoren begrenzt (Beispiel: FOD852 von Fairchild Semiconductor: 7 kHz). Optokoppler mit LEDs und Photodioden haben eine Grenzfrequenz von 10 MHz und darüber, im wesentlichen durch die Ansteuerung und die Leuchtdiode begrenzt. Optokoppler mit Laserdioden, meist VCSEL, und Photodioden haben eine Grenzfrequenz von einigen GHz, im Wesentlichen durch die Laserdioden-Treiber und die Eingangsstufe der Photodioden begrenzt.

Leuchtdioden vertragen nur Sperrspannungen von ca. 5 V, bei Fototransistoren liegt die zulässige Sperrspannung bei 30 V bis 50 V. Digitale Optokoppler arbeiten empfängerseitig meist an einer Spannung von 5 V.

CMTI (Common mode transient Immunity) ist auch ein wichtiger Kennwert. Dieser wird in kV/us eingegeben. Er sagt wie robust die Isolation ist. CMTI=Delta(V)/Delta(t): welche Spannungsdifferenz kann die Isolation maximal durchhalten.

Einsatzgebiete

Digitaler Optokoppler im DIL-8-Gehäuse

Optokoppler werden unter anderem dort eingesetzt, wo Stromkreise galvanisch voneinander getrennt werden und eine Information, wie ein Steuersignal, über die elektrisch isolierende Trennstrecke übertragen werden muss. Einsatzbeispiele sind:

Analoge Signalübertragung:

  • Galvanisch vom Stromnetz getrennte Stromversorgungen, wie Schaltnetzteile zur Regelung der Ausgangsspannung. Dabei wird die sekundärseitige Ausgangsspannung gemessen, die Abweichung der Ausgangsspannung zum Sollwert, beispielsweise als Folge von Laständerungen, wird über einen Optokoppler auf die Primärseite übertragen, wo das Tastverhältnis oder die Steuerfrequenz so verändert wird, dass die Ausgangsspannung am Sollwert gehalten werden kann. Keine Anforderung an die Linearität.
  • bei hohen Linearitätsanforderungen verwendet man Optokoppler mit einer zweiten, möglichst gleichen Fotodiode, die im Rückführkreis des LED-Treiberverstärkers liegt; siehe Trennverstärker.

Digitale Signalübertragung:

Alternativen

Als Alternative gibt es Isolationsverstärker und digitale Koppler, die mit induktiver oder kapazitiver Übertragung arbeiten und damit eine galvanische Trennung erreichen. Diese Übertragungsverfahren können im Gegensatz zu Optokopplern keine Gleichpegel direkt übertragen, daher ist eine zusätzliche Modulation des zu übertragenden analogen Signals im Isolationsverstärker notwendig. Induktive Koppler liefern manchmal neben den Signalen auch elektrische Energie auf die andere Seite.

Als Alternative zur potentialgetrennten Übertragung von Wechselspannungen und Impulsen können Übertrager dienen.

Siehe auch: Photothyristor, Lichtleitkabel, Drahtlose_Energieübertragung

Geschichte

Zwei resistive Optokoppler

Die ersten Optokoppler wurden in den 1960er Jahren von Ivars G. Akmenkalns et al. bei der Firma IBM entwickelt und waren resistive Optokoppler, die in den ersten Versionen kleinere Glühlampen oder Glimmlampen als Sendeelement und einen Fotowiderstand als Empfängerelement in einem lichtundurchlässigen Metallgehäuse verwendet haben.[3] 1977 wurden die Lampen durch Leuchtdioden ersetzt und unter anderem in der Audiotechnik, z. B. bei Gitarrenverstärkern, zur Steuerung der Kennlinie von Verstärkern eingesetzt. Resistive Optokoppler mit Fotowiderstand weisen eine geringe Grenzfrequenz von wenigen 100 Hz auf, bei Verwendung von Glühlampen von einigen 10 Hz.[4]

Literatur

  • Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 12. Auflage. Springer, Berlin 2002, ISBN 978-3-540-42849-7.

Weblinks

Commons: Optokoppler – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. https://www.fairchildsemi.com/datasheets/FO/FOD852.pdf
  2. Application Note AN-3001: Optocoupler Input Drive Circuits, Seite 1. Fairchild Semiconductor Corporation, abgerufen am 27. Januar 2015.
  3. Patent US3417249: Four terminal electro-optical logic device. Angemeldet am 30. Dezember 1963, veröffentlicht am 17. Dezember 1968, Anmelder: IBM, Erfinder: Ivars G. Akmenkalns, Raymond J. Wilfinger, Alan D. Wilson.
  4. Photoconductive Cells and Analog Optoisolators (Vactrols), Seite 28 ff. PerkinElmer, abgerufen am 27. Januar 2015.