Satz von Minkowski

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Juni 2011 um 00:48 Uhr durch Christian1985 (Diskussion | Beiträge) (endlichdimensional schreibt man zusammen abgeleitet von http://www.duden.de/rechtschreibung/vierdimensional). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Der Satz von Minkowski (nach Hermann Minkowski) ist ein mathematischer Satz, der sich mit gewissen geometrischen Gebilden und ihren äußersten Randpunkten beschäftigt. Genauer stammt er aus der Theorie der konvexen Mengen in endlichdimensionalen Räumen und stellt eine Beziehung zwischen einer kompakten konvexen Menge und ihren Extremalpunkten her.

Formulierung des Satzes

Für eine kompakte, konvexe Menge und eine Teilmenge sind folgende Aussagen äquivalent[1]:

  • ist die konvexe Hülle von .
  • Die Extremalpunkte von sind in enthalten.

Insbesondere ist in einem endlichdimensionalen Raum eine kompakte, konvexe Menge gleich der konvexen Hülle ihrer Extremalpunkte. Auch diese Aussage wird oft Satz von Minkowski genannt.

Satz von Carathéodory

Constantin Carathéodory hat folgende Aussage bewiesen[2]:

(1) Ist in einem n-dimensionalen affinen Unterraum enthalten, so ist die konvexe Hülle von gleich der Menge der Konvexkombinationen aus maximal Elementen von , das heißt:

.

Kombiniert man dies mit dem Satz von Minkowski, so erhält man:

(2) Jeder Punkt einer kompakten, konvexen Teilmenge , die in einem n-dimensionalen affinen Unterraum enthalten ist, ist eine Konvexkombination von höchstens Extremalpunkten.

Da man stets als affinen Unterraum wählen kann, erhält man eine Aussage, die manchmal auch als Satz von Minkowski bezeichnet wird:

(3) Jeder Punkt einer kompakten, konvexen Teilmenge ist eine Konvexkombination von höchstens Extremalpunkten.

Bemerkungen

  • Obiger Satz von Minkowski verallgemeinert sich in unendlichdimensionalen lokalkonvexen Räumen zum Satz von Krein-Milman. Die dort geltenden Aussagen sind schwächer, da Abschlussbildungen hinzukommen.
  • Obige Aussage (3) lässt sich nicht weiter verbessern. Für die Darstellung des Mittelpunktes eines nicht-ausgearteten Simplexes im muss man alle Ecken verwenden.
  • Eine weitere nicht-triviale Folgerung aus dem Satz von Minkowski ist, dass eine kompakte, konvexe Menge überhaupt Extremalpunkte hat. Solche Überlegungen spielen bei der Begründung des Simplex-Verfahrens eine Rolle.

Einzelnachweise

  1. Arne Brøndsted: An Introduction to Convex Polytopes, Springer New York Heidelberg Berlin (1983), Th. 5.10
  2. Arne Brøndsted: An Introduction to Convex Polytopes, Springer New York Heidelberg Berlin (1983), Cor. 2.4