Trapez-Methode

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 14. August 2016 um 14:17 Uhr durch Eginho (Diskussion | Beiträge) (Kaputten Link zum PDF durch neuen Link ersetzt, Titel des PDF vervollständigt.). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Das implizite Trapez-Verfahren ist ein Verfahren zur numerischen Lösung eines Anfangswert-Problems

Es lässt sich sowohl den Runge-Kutta-Verfahren als auch den Adams-Moulton-Verfahren zuordnen. Das Trapezverfahren ist A-stabil mit der Besonderheit, dass für die Schwingungsgleichung kein Amplitudenfehler auftritt[1]. Das Verfahren lässt sich aus der Trapezregel herleiten:

mit

Lösungsmethode

Zur Lösung dieses, in der Regel nichtlinearen, Gleichungssystems können verschiedene numerische Verfahren genutzt werden. Für das quadratisch konvergente Newton-Verfahren ergibt sich konkret:

Man erhält also ein lineares Gleichungssystem

wobei J die Jacobi-Matrix

,

die Einheitsmatrix und der Iterationsschritt ist.

Stabilität

Mit der Testgleichung bekommt man die Stabilitätsfunktion

Auf der imaginären Achse gilt , daher ist die Trapezmethode A-stabil.

Schrittweite

Die (variable) Schrittweite kann aus folgender Beziehung berechnet werden:

;

bezeichnet den zugelassenen lokalen Diskretisierungsfehler. Der Ansatz liefert für die implizite Trapez-Methode

.

Dabei ist der Betrag des betragsmäßig größten Eigenwerts der Jacobi-Matrix (Spektralradius). Die numerische Bestimmung der Eigenwerte ist sehr zeitaufwendig; für den Zweck der Schrittweitenberechnung ist es im Allgemeinen ausreichend die Gesamtnorm heranzuziehen, die immer größer oder gleich der Spektralnorm ist. N ist der Rang der Jacobi-Matrix und deren Elemente.

Literatur

  • Hans R. Schwarz, Norbert Köckler: Numerische Mathematik. 5. Auflage, Teubner, Stuttgart 2004, ISBN 3-519-42960-8, S. 343.

Einzelnachweise

  1. M. Kloker: Numerische Löser (Zeitintegrationsverfahren) für die Gewöhnliche Modelldifferentialgleichung y'=αy (PDF; 2,2 MB), Universität Stuttgart, 1996