Verbundwerkstoff

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 6. September 2016 um 13:38 Uhr durch Markobr (Diskussion | Beiträge) (Änderungen von 217.85.32.62 (Diskussion) rückgängig gemacht (HG) (3.1.20)). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Kohlenstofffasergewebe in Leinwandbindung
Kohlenstofffaser im Vergleich zu einem menschlichen Haar

Ein Verbundwerkstoff oder Kompositwerkstoff (engl. composite (material)) ist ein Werkstoff aus zwei oder mehr verbundenen Materialien, der andere Werkstoffeigenschaften besitzt als seine einzelnen Komponenten. Für die Eigenschaften der Verbundwerkstoffe sind stoffliche Eigenschaften und Geometrie der Komponenten von Bedeutung. Insbesondere spielen oft Größeneffekte eine Rolle. Die Verbindung erfolgt durch Stoff- oder Formschluss oder eine Kombination von beidem. Bei Verpackungen wird daneben der Begriff Verbundstoff für zu diesem Zweck hergestellte Materialien verwendet. Gelegentlich wird auch die Bezeichnung Compound (engl. für ‚Mischung‘)[1] für Verbundwerkstoffe mit Kunststoffanteil verwendet.

Eigenschaften

Verbundwerkstoffe sind Gemische aus sortenreinen Grundstoffen. Eine Lösung der einzelnen Grundstoffe untereinander findet dabei nicht oder nur oberflächlich statt. Durch die Compoundierung werden somit mindestens zwei Stoffe miteinander verbunden. Ziel der Compoundierung ist es, einen Werkstoff zu erhalten, der besonders günstige Eigenschaften der Bestandteile kombiniert. Als besondere Herausforderung gilt es, eine innige Verbindung der Phasen langfristig und unter Belastung sicherzustellen.

Ziele der Compoundierung

Die Ziele der Compoundierung sind vielfältig und richten sich nach den gewünschten Eigenschaften des späteren Bauteils. Hierbei sind jedoch oft in der Summe der Anforderungen Kompromisse einzugehen, da sich, wie so oft bei der Lösung technischer Probleme, einzelne Forderungen diametral gegenüberstehen. Im Folgenden sollen jedoch die wichtigsten Ziele der Compoundierung genannt werden:

  • Veränderung der mechanischen Eigenschaften des Grundpolymers. Hierbei werden über die Zugabe von Verstärkungs- und Füllstoffe, sowie über eine Schlagzähmodifizierung mechanische Kenngrößen wie die Zugfestigkeit, die Bruchdehnung (s. hierzu auch Zugversuch) und die Schlagzähigkeit eingestellt.
  • Farbeinstellungen. Über die Zugabe von Pigmenten oder sogenannten Masterbatches wird die vom Kunden gewünschte Farbe eingestellt. Hierbei ergeben sich oft erste Zielkonflikte, da bestimmte Farbeinstellungen die mechanischen Eigenschaften teilweise sehr deutlich beeinflussen.
  • Flammschutz. Durch Zugabe von Flammschutzmitteln kann verhindert werden, dass Kunststoffe, von Natur aus sonst brennbar, entzündet werden oder nach Entfernen der Zündquelle weiterbrennen.
  • Zugabe von Stabilisatoren und Stabilisatorsystemen. Gründe für die Stabilisierung sind im Wesentlichen:
    • Temperaturinitiierter Kettenabbau während der Verarbeitung. Diese kann durch eine zu hohe Scherung des Materials oder durch zu lange Verweilzeiten in den verarbeitenden Maschinen entstehen. Sie wird durch eine einfache, auf eine kurzfristige Belastung hin ausgelegte Stabilisierung verhindert.
    • Temperaturinitiierter Kettenabbau in der Anwendung. Kunststoffteile, welche in der Anwendung stark temperaturbelastet werden, z. B. im Motorraum eines Kfz, müssen auf diese Belastung hin speziell stabilisiert werden.
    • Verbesserung der Witterungsbeständigkeit: Kunststoffteile in Außenbereichen sind starken Schädigungen durch Oxidation und Hydrolyse ausgesetzt. Diese können in einem gewissen Umfang durch spezielle Stabilisatoren ausgeglichen werden. Je nach Grundpolymer und Stabilisierung können diese Effekte unterschiedlich lang aufgehalten werden.
  • Zugabe von Verarbeitungshilfsstoffen. Diese Gruppe von Stoffen verbessert im Wesentlichen die Verarbeitung der Polymere. Auf diese Weise wird z. B. durch Entformungshilfsmittel die Entformung im Spritzgießprozess vereinfacht. Für die Endanwendung ist diese Gruppe von Additiven weniger relevant.

Geometrische Unterteilung

Nach der Geometrie des Verbunds unterscheidet man:

Die Komponenten eines Verbundwerkstoffs können dabei selbst wieder Verbundwerkstoffe sein. Bei Teilchen- und Faserverbundwerkstoffen sind Teilchen bzw. Fasern in eine andere Komponente des Verbundwerkstoffes, die sogenannte Matrix, eingebettet. In Faserverbundwerkstoffen können die Fasern in einer oder mehreren bestimmten Richtungen verlaufen bzw. Vorzugsrichtungen haben. Faserverbundwerkstoffe können schichtweise hergestellt werden, sind dadurch aber noch keine Schichtverbundwerkstoffe, wenn die aufeinanderfolgenden Schichten gleichartig sind. Der Begriff Laminat wird hier allerdings auch verwendet. Schichtverbundwerkstoffe bestehen aus aufeinanderliegenden Schichten unterschiedlicher Anzahl. Der Spezialfall von drei Schichten, davon zwei identische Außenschichten, wird auch als Sandwichverbund bezeichnet. Bei Durchdringungsverbundwerkstoffen bilden die einzelnen Komponenten für sich jeweils zusammenhängende, offenporige Materialien. Sie werden zum Beispiel durch Tränken eines offenporigen gesinterten Werkstoffs (zum Beispiel einer Schaumkeramik) mit einem geschmolzenen zweiten Stoff hergestellt.

Stoffliche Unterteilung

Aus der stofflichen Einteilung der Werkstoffe in polymere (Kunststoffe), metallische, keramische und organische Werkstoffe ergeben sich die grundsätzlichen Kombinationsmöglichkeiten für Verbundwerkstoffe. Dabei wird anwendungsspezifisch versucht, die unterschiedlichen Vorteile der einzelnen Werkstoffe im Endwerkstoff zu kombinieren und die Nachteile auszuschließen.

Beispiele für Teilchenverbundwerkstoffe
Verbundwerkstoff Teilchen Matrix
Schleifscheiben keramisch polymer/Glas
Hartmetall keramisch metallisch
Keramikverbunde keramisch keramisch
Spanplatten organisch polymer
Beton keramisch (mineralisch) keramisch (mineralisch)
Polymerbeton mineralisch polymer

Beispiele für Faserverbundwerkstoffe:

Beispiele für Schichtverbundwerkstoffe:

Verwendete Zuschlagstoffe

Verstärkungsstoffe

Unter Verstärkungsstoffe (reinforcement) versteht man in Kunststoffen eingesetzte anorganische oder organische Zusatzstoffe, die die Kunststoffmatrix verstärken. Unter Verstärkung ist die Verbesserung mechanischer und physikalischer Eigenschaften, wie Elastizität, Biegefestigkeit, Kriechmechanik und Wärmeformbeständigkeit zu verstehen. Verstärkungsstoffe werden gezielt zur Verbesserung dieser Werkstoffeigenschaften eingesetzt.

Einteilung der Verstärkungsstoffe

Erfolgt einerseits nach der chemischen Zusammensetzung, andererseits auch nach der physikalischen Gestalt des Stoffes. So gibt es flächige Verstärkungsstoffe in Form von Gewebe, Gelege, Gestricke, Gewirke.

Ausgangsstoffe für diese flächigen Verstärkungsstoffe sind faserförmige Verstärkungsstoffe, wobei die Fasern meist aus Glas, Kohlenstoff, Aramid, Polyester oder Naturprodukte wie z. B. Flachs, Jute. gebildet sind.

Neben den faserförmigen Verstärkungsstoffen gibt es auch eine Vielzahl an teilchenförmigen Verstärkungsstoffen, wie beispielsweise Talkum, Glimmer, Graphit, Aluminiumhydroxid.

Die Eigenschaften verstärkter Thermoplaste werden vor allem vom Volumenanteil des Verstärkungsstoffes, dessen Form (Formfaktor, Länge/Durchmesser-, L/D- oder Aspektverhältnis) und der Wechselwirkung an der Grenze zur Matrix beeinflusst.

Aspektverhältnis

Zum Füllen und Verstärken von Thermoplasten werden Zusatzstoffe stark unterschiedlicher Form verwendet. Der für die mechanischen Eigenschaften des Verbunds bedeutsame Formfaktor ist definiert als das Verhältnis seiner Länge zu seiner Dicke (L/D-Verhältnis).

  • Kugelförmige und kubische Partikel haben einen Formfaktor von 1. Beispiele sind Glaskugeln oder Calciumcarbonat.
  • Fasern oder andere anisotrope plättchenförmige Füllstoffe können sehr hohe Formfaktoren aufweisen und dieser liegt meist deutlich über 100.
  • Plättchenförmige Verstärkungsstoffe, zu denen Schichtsilikate wie Talk und Glimmer zählen, liegen meist zwischen 5 und 50.

Verstärkungsstoffe mit hohem L/D-Verhältnis versteifen Polymermatrices in der Regel stärker als Füllstoffe mit geringerem Aspektverhältnis.

Die Verstärkungswirkung beruht darauf, dass eine angelegte mechanische Spannung von der Polymermatrix aufgenommen wird und auf den Verstärkungsstoff übertragen wird. Je größer das Aspektverhältnis des Verstärkungsstoffes ist, desto besser kann die durch die Spannung verursachte Energie im Material abgeführt werden. Eine Beschichtung der Zusatzstoffe mit Kupplungsreagenzien (sog. Koppler) kann die Verträglichkeit mit der Matrix und damit die Verarbeitbarkeit und auch die resultierenden mechanischen Eigenschaften zusätzlich deutlich verbessern. So gelingt es innovativen Compounding-Betrieben durch optimale Formulierung der Rezeptur und Einsatz von geeigneten Kopplersystemen hochqualitative Compounds herzustellen.

Plättchenförmige Verstärkungsstoffe weisen zwar meist einen geringeren E-Modul als faserförmige Verstärkungsstoffe auf, erhöhen aber den E-Modul trotzdem beträchtlich. Ein wesentlicher Vorteil der teilchenförmigen Verstärkungsstoffe ist, dass die Endeigenschaften des Kunststoffbauteils durch die Teilchenform nahezu isotrop, also richtungsunabhängig sind. Durch das Aspektverhältnis zwischen 5 und 50 sind plättchenförmige Verstärkungsstoffe, wie beispielsweise Talkum eine sehr gute Lösung, um Kunststoffe zu verstärken, gleichzeitig jedoch die Richtungsabhängigkeit der Eigenschaften nicht allzu sehr negativ zu beeinflussen.

Die Eigenschaftsverbesserung durch Verstärkungsstoffe betrifft beispielsweise:

  • die Erhöhung des E-Moduls
  • die Erhöhung der Biegefestigkeit
  • die positive Beeinflussung des Schwindungsverhaltens
  • die Verbesserung des Kriechverhaltens
  • oder die Erhöhung der Wärmeformbeständigkeit.

Einsatz findet Talkum als Verstärkungsstoff beispielsweise bei der Verstärkung von Polyolefinen, wie HDPE oder PP, für einen vielseitigen Einsatz in der Auto- oder Bauindustrie. Verstärkte Polypropylencompounds sind seit ca. 30 Jahren auf dem Markt. Ende der 60er Jahre wurden erstmals talkum- (TV) und glasfaserverstärkte (GFV) Produkte auf Basis PP angeboten.

Beispiele:

  • Glasfaser: Kurz- ("KGF") oder Langglasfaser ("LGF") sind die am häufigsten zugegebenen Verstärkungsstoffe. Sie sind deutlich preisgünstiger als zum Beispiel Kohlenstofffasern.
  • Kohlenstofffasern: Die leichteste, aber auch teuerste Faser für Verstärkungen.
  • Wollastonit: Wollastonit ist ein Grenzfall zwischen Verstärkung und Füllung. Wegen seiner stäbchenförmigen Kristallstruktur kann aber durch Beimischung ein verstärkender Effekt erzielt werden.

Füllstoffe

Häufige Compounds

  • alle TPE (Thermoplastische Elastomere)
  • eingefärbte Materialien
  • PP mit 40 % Kreide
  • PP mit 30 % Glasfaser (KGF oder LGF)
  • PA 6 oder 66 mit 30 % Glasfaser (KGF oder LGF)
  • ABS mit 16 % Glasfaser (KGF)
  • PC mit 20 % Glasfaser
  • ABS, PC, PP flammgeschützt

Siehe auch

Literatur

Weblinks

Commons: Verbundwerkstoffe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Merriam Webster: Definition Compound. Abgerufen am 1. März 2016.
  2. Engelbert Westkämper,Hans-Jürgen Warnecke: Einführung in die Fertigungstechnik. Vieweg + Teubner, 8. Auflage, S. 66.