„Aminopolycarbonsäuren“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K fixed typo
Luke081515Bot (Diskussion | Beiträge)
Bot: 4 nicht mehr erreichbare Weblinks ersetzt, gemäß Botauftrag.
Zeile 10: Zeile 10:
| Monat=01
| Monat=01
| Seiten=69–106
| Seiten=69–106
| Online=[http://libgen.org/scimag/get.php?doi=10.1111/j.1574-6976.2001.tb00572.x PDF]
| Online=[http://libgen.io/scimag/get.php?doi=10.1111/j.1574-6976.2001.tb00572.x PDF]
| DOI=10.1111/j.1574-6976.2001.tb00572.x
| DOI=10.1111/j.1574-6976.2001.tb00572.x
}}
}}
Zeile 31: Zeile 31:
| Tag=
| Tag=
| Seiten=3071–3072
| Seiten=3071–3072
| Online=[http://libgen.org/scimag/get.php?doi=10.1016/s0040-4039(00)77410-7 PDF]
| Online=[http://libgen.io/scimag/get.php?doi=10.1016/s0040-4039(00)77410-7 PDF]
| DOI=10.1016/s0040-4039(00)77410-7
| DOI=10.1016/s0040-4039(00)77410-7
}}</ref> und Gerste die [[Mugineinsäure]]<ref>[http://soils.wisc.edu/facstaff/barak/images/mug_frm.htm Mugineic acid, a phytosiderophore]</ref> um Eisen aus dem Boden aufzunehmen.<ref name=ternes>
}}</ref> und Gerste die [[Mugineinsäure]]<ref>[http://soils.wisc.edu/facstaff/barak/images/mug_frm.htm Mugineic acid, a phytosiderophore]</ref> um Eisen aus dem Boden aufzunehmen.<ref name=ternes>
Zeile 53: Zeile 53:
| Tag=
| Tag=
| Seiten=2295–2297
| Seiten=2295–2297
| Online=[http://libgen.org/scimag/get.php?doi=10.1016/s0031-9422(00)91014-8 PDF]
| Online=[http://libgen.io/scimag/get.php?doi=10.1016/s0031-9422(00)91014-8 PDF]
| DOI=10.1016/s0031-9422(00)91014-8
| DOI=10.1016/s0031-9422(00)91014-8
}}</ref>
}}</ref>
Zeile 89: Zeile 89:
| Monat=
| Monat=
| Seiten=1133–1143
| Seiten=1133–1143
| Online=[http://libgen.org/scimag/get.php?doi=10.1002/hlca.194502801158 PDF]
| Online=[http://libgen.io/scimag/get.php?doi=10.1002/hlca.194502801158 PDF]
| DOI=10.1002/hlca.194502801158
| DOI=10.1002/hlca.194502801158
}}</ref>
}}</ref>

Version vom 9. Oktober 2015, 15:17 Uhr

Asparaginsäure

Die Aminopolycarbonsäuren oder Komplexone sind eine Gruppe von Komplexbildnern, welche aus einem oder mehreren stickstoffhaltigen Gruppen und mehreren Carboxygruppen bestehen.[1][2] EDTA und NTA werden dabei in den größten Mengen eingesetzt. EDTA ist jedoch nicht biologisch abbaubar[2] und NTA gilt als krebserregend.[3] Daher gewinnen neue Chelatoren wie Tetranatriumiminodisuccinat, Methylglycindiessigsäure und β-Alanindiessigsäure an Bedeutung.

Die natürlichen Aminosäuren Asparaginsäure und Glutaminsäure sind Aminodicarbonsäuren und zählen so auch zu den Aminopolycarbonsäuren.

Sie werden für die Chelatometrie benötigt[4] und in Waschmitteln verwendet.

Natürliche Aminopolycarbonsäuren

Einige Lebewesen verwenden Aminopolycarbonsäuren als Siderophore. So stellen Bakterien (S,S-Enantiomer) und Pilze (R,R-E.) Rhizoferrin und Rhizobactine her. Bei den Süßgräsern nutzt Hafer die Aveninsäure[5] und Gerste die Mugineinsäure[6] um Eisen aus dem Boden aufzunehmen.[7] Bei praktisch allen höheren Pflanzen ist Nicotianamin vorhanden.[8]

Rhizoferrin
Rhizobactin DM4
Rhizobactin 1021
Mugineinsäure
Aveninsäure

Diese bilden teilweise deutlich stabilere Komplexe mit Eisen als die synthetischen Aminopolycarbonsäuren.

Synthetische Aminopolycarbonsäuren

Aminomalonsäure[9] Iminodiessigsäure (IDA)[10] Nitrilotriessigsäure (NTA)
Ethylendiamintetraessigsäure (EDTA) Diethylentriaminpentaessigsäure (DTPA)[10] Ethylenglycol-bis(aminoethylether)-N,N,N',N'-tetraessigsäure (EGTA)
BAPTA Tetranatriumiminodisuccinat (IDS) 1,4,7,10-Tetraazacyclododecan-1,4,7,10-tetraessigsäure (DOTA)[10]
HEDTA Ethylendiamindibernsteinsäure (EDDS) Polyasparaginsäure
β-Alanindiessigsäure (β-ADA) Methylglycindiessigsäure (MGDA) Fura-1/2/3

Einzelnachweise

  1. Aminopolycarbonsäuren
  2. a b Margarete Bucheli-Witschel, Thomas Egli: Environmental fate and microbial degradation of aminopolycarboxylic acids. In: FEMS Microbiology Reviews. Band 25, Nr. 1, Januar 2001, S. 69–106, doi:10.1111/j.1574-6976.2001.tb00572.x (PDF).
  3. Zahmer Teufel. In: Der Spiegel. Nr. 42, 1971, S. 198 (online).
  4. Complexometric Titration with Aminopolycarboxylic Acids (EDTA and Analogs). Abgerufen am 11. Juli 2014.
  5. Shinji Fushiya, Yoshikazu Sato, Shigeo Nozoe, Kyosuke Nomoto, Tsunematsu Takemoto, Sei-ichi Takagi: Avenic acid, a new amino acid possessing an iron chelating activity. In: Tetrahedron Letters. Band 21, Nr. 32, Januar 1980, S. 3071–3072, doi:10.1016/s0040-4039(00)77410-7 (PDF).
  6. Mugineic acid, a phytosiderophore
  7. Waldemar Ternes: Biochemie der Elemente: Anorganische Chemie biologischer Prozesse. Springer DE, 2013, ISBN 3-8274-3020-8, S. 115 (eingeschränkte Vorschau in der Google-Buchsuche).
  8. Miloš Buděšínský, Herbert Budzikiewicz, Želimír Procházka, Helmut Ripperger, Axel Römer, Günter Scholz, Klaus Schreiber: Nicotianamine, a possible phytosiderophore of general occurrence. In: Phytochemistry. Band 19, Nr. 11, Januar 1980, S. 2295–2297, doi:10.1016/s0031-9422(00)91014-8 (PDF).
  9. G. Schwarzenbach, E. Kampitsch, R. Steiner: Komplexone II. Das Komplexbildungsvermögen von Iminodiessigsäure, Methylimino-diessigsäure, Aminomalonsäure und Aminomalonsäure-diessigsäure. In: Helvetica Chimica Acta. Band 28, Nr. 1, 1945, S. 1133–1143, doi:10.1002/hlca.194502801158 (PDF).
  10. a b c Giorgio Anderegg, Francoise Arnaud-Neu, Rita Delgado, Judith Felcman, Konstantin Popov: Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications* (IUPAC Technical Report). In: Pure and Applied Chemistry. 77, 2005, doi:10.1351/pac200577081445. PDF