Sphenische Zahl

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 31. Oktober 2019 um 22:42 Uhr durch 1234qwer1234qwer4 (Diskussion | Beiträge) (Korrektur).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Als sphenische Zahlen (griechisch σφήν sphén „Keil“) werden in der mathematischen Zahlentheorie die natürlichen Zahlen bezeichnet, die das Produkt genau dreier verschiedener Primzahlen sind. So ist beispielsweise die Zahl 30 eine sphenische Zahl, da sie (Primfaktorzerlegung) durch ein Produkt aus den Primzahlen 2, 3 und 5 dargestellt werden kann. 60 hingegen ist keine sphenische Zahl: Zwar lässt sich auch diese durch das Produkt genau dreier Primzahlen darstellen doch tritt die 2 in der Primfaktorzerlegung doppelt auf. Die sphenischen Zahlen sind also Fastprimzahlen der Ordnung 3.

In der Oeconomischen Enzyklopädie von Johann Georg Krünitz aus dem späten 18. und frühen 19. Jahrhundert wird eine sphenische Zahl definiert als

[…] eine Körperzahl, welche drei ungleiche Seiten hat, z. B. vier und zwanzig, deren Seiten zwei, drei und vier sind.[1]

also eine Zahl, die als Produkt dreier verschiedener ganzer Zahlen dargestellt werden kann, die aber keine Primzahlen sein müssen (im gegebenen Beispiel sind 2 und 3 zwar Primzahlen, die 4 jedoch nicht).

Alle sphenischen Zahlen besitzen genau 8 Teiler (nämlich 1, p, q, r, pq, pr, qr und pqr). Allgemein gilt: Wenn n quadratfrei und Produkt von k Primzahlen ist, dann hat n genau Teiler (1 und n mitgerechnet). Sphenische Zahlen sind per definitionem quadratfrei (haben also Teiler). Die Möbiusfunktion ergibt für jede sphenische Zahl −1. Eine berühmte sphenische Zahl ist die Hardy-Ramanujan-Zahl 1729 = Die sphenische Zahl nützt gelegentlich bei Teilbarkeitsüberlegungen.

Die ersten sphenischen Zahlen lauten: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, …[2]

Die derzeit (2018) größte bekannte sphenische Zahl ist das Produkt der drei größten bekannten Primzahlen.

Unvollkommenheit

[Bearbeiten | Quelltext bearbeiten]

Die Summe aller Teiler, einschließlich 1 und n, beträgt Sphenische Zahlen sind nicht vollkommen, denn andernfalls wäre s = 2pqr. Die linke Seite von ist durch 4 teilbar (denn und sind gerade), deshalb teilt 4 auch die rechte Seite, so dass sein muss (wegen ). Daher teilt die linke, und dann auch die rechte Seite, woraus folgt. reduziert sich deshalb auf die widersprüchliche Gleichung

Alle ungeraden sphenischen Zahlen sind defizient, weil

also Unter den geraden sphenischen Zahlen sind nur (mit beliebigem Primfaktor ) und abundant (alle anderen defizient). Sphenische Zahlen der Form sind pseudo-vollkommen (siehe vollkommene Zahl), weil sie sich als Summe wenigstens einiger Teiler (nämlich r, 2r, 3r) darstellen lassen. 70 ist die einzige merkwürdige (d. h. abundante, aber nicht pseudo-vollkommene) sphenische Zahl.

Die Formel für die Summe aller Teiler quadratfreier Zahlen ist verallgemeinerungsfähig (Beweis z. B. mit vollständiger Induktion über k). Die seien verschiedene Primzahlen. Für

gilt

.

Daraus folgt, dass n auch für nicht vollkommen ist (der indirekte Beweis oben lässt sich mühelos auf den allgemeinen Fall ausdehnen). Also: Alle quadratfreien Zahlen mit wenigstens drei Primfaktoren sind nicht vollkommen (6 dagegen, eine quadratfreie Zahl mit nur zwei Primfaktoren, ist durchaus vollkommen).

Zwillingszahlen

[Bearbeiten | Quelltext bearbeiten]

Die Zahlen und bilden das erste Paar zweier direkt aufeinanderfolgender sphenischer Zahlen; man nennt ein solches Zahlenpaar sphenische Zwillingszahlen.

Für sphenische Zwillingszahlen gilt r und c sind also Primzahl-Lösungen der diophantischen Gleichung Nach einem Satz der elementaren Zahlentheorie haben alle Lösungen die Form und , dabei sind u und v positive Minimallösungen und h ist eine ganz Zahl. Auf der Suche nach Zwillingen braucht man zu verschiedenen Primzahlen a, b, p, q nur ein h zu bestimmen, so dass x und y Primzahlen werden. Ein Beispiel oder vereinfacht Alle Lösungen haben die Form und Für sind x und y Primzahlen (nämlich 89 und 83), so dass und sphenische Zwillingszahlen ergeben. Auch für und findet man Primzahl-Lösungen und infolgedessen sphenische Zwillinge (z. B. 6285 und 6286 für ).

Drillingszahlen

[Bearbeiten | Quelltext bearbeiten]

Das erste Triplett von aufeinanderfolgenden sphenischen Zahlen bilden und . Bei solchen sphenischen Drillingszahlen hat die mittlere notwendig den Faktor 2 (nicht die beiden äußeren, weil von zwei benachbarten geraden Zahlen eine durch 4 teilbar ist). Eine Folge von vier oder mehr direkt aufeinanderfolgenden sphenischen Zahlen gibt es nicht, da jede vierte ganze Zahl durch 4 teilbar und somit nicht quadratfrei ist.

Die Suche nach Drillingen soll an zwei Beispielen erläutert werden.

1. Beispiel: Die beiden diophantischen Gleichungen und haben die Lösungen und bzw. und (h und k ganze Zahlen). Damit die beiden Lösungen Drillingszahlen ergeben, muss , also . Lösungen dieser speziellen diophantischen Gleichung sind und (j ganze Zahl). Deshalb gilt: (und nach Konstruktion). x, y und s sind Primzahlen für (nämlich 50821, 52361 und 49369).[3] Also bilden die Zahlen und sphenische Drillinge.

2. Beispiel: und oder ausgerechnet: und Die Lösungsmenge lässt sich beschreiben durch (h und k ganze Zahlen). Aus der Bedingung folgt eine dritte diophantische Gleichung: Ihre Lösungen sind und (j ganze Zahl). Wenn man sie in die Formeln für x, y und s einsetzt, erhält man und ( nach Konstruktion). Damit sphenische Drillingszahlen entstehen, müssen x, y und s Primzahlen sein. Das ist für bereits der Fall (man erhält das bekannte Triplett 1309, 1310, 1311). Auch erzeugt Primzahlen ( und ). Das zugehörige Triplett lautet: 440209, 440210, 440211.

Drillinge sind selten. Trotzdem liegt die Vermutung nahe, dass man beliebig viele konstruieren kann. Aber der Beweis, dass es unendlich viele Drillinge gibt, dürfte schwer sein. Auch der Satz von Lejeune Dirichlet hilft nicht weiter, denn er besagt nur, dass in jeder Folge usw. je für sich unendlich viele Primzahlen existieren, gefordert ist aber für alle drei Folgen jeweils dasselbe j.

  1. Oeconomische Encyclopädie online
  2. Folge A007304 in OEIS
  3. Das lässt sich z. B. mit dem Primzahltester nachweisen