Grad (Polynom)

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 1. November 2021 um 17:46 Uhr durch Dhanyavaada (Diskussion | Beiträge) (Einzelnachweise).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Der Grad eines Polynoms in einer Variablen ist in der Mathematik der größte Exponent in dessen Standarddarstellung als Summe von Monomen. Beispielsweise ist der Grad des Polynom gleich 5, nämlich der Exponent des Monoms . Bei Polynomen in mehreren Variablen ist der Grad eines Monoms definiert als die Summe der Exponenten der enthaltenen Variablenpotenzen und der Grad eines Polynoms (auch Totalgrad genannt) als das Maximum der Grade der Monome, aus denen das Polynom besteht. So haben zum Beispiel das Monom und damit auch das Polynom den Grad 6.[1]

Sei ein kommutativer Ring, eine natürliche Zahl und der Polynomring in den Variablen . Ist

ein Monom mit , so ist der Grad von definiert als

.

Sei nun

ein Polynom mit , und Monomen . Dann ist der Grad oder Totalgrad von definiert als

.

Es gibt verschiedene Konventionen zur Definition des Grades von . In der Algebra ist es üblich, zu setzen. Dagegen wird in den Bereichen der Mathematik, die sich mit der Lösung von algebraischen Problemen mit Hilfe von Computern befassen, häufig die Definition bevorzugt.

Bemerkung: Da Monome nur aus endlich vielen Faktoren bestehen, lässt sich die Definition des Grads eines Monoms und somit auch die Definition des Grads eines Polynoms direkt auf Polynomringe in beliebig vielen Variablen erweitern.

Seien Polynome über . Dann gilt

  • und
  • .

Für den Fall erhält man sogar .

Ist ein Integritätsring, so gilt sogar

für alle .

Betrachte Polynome in (siehe ganze Zahlen). Es gilt

  • ,
  • ,
  • und
  • .

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Spektrum.de