Abelsche Identität
Die abelsche Identität ist ein Ausdruck für die Wronski-Determinante zweier linear unabhängiger homogener Lösungen einer linearen gewöhnlichen Differentialgleichung zweiter Ordnung. Die Beziehung wurde 1827 von dem norwegischen Mathematiker Niels Henrik Abel (1802–1829) hergeleitet.
Aussage
[Bearbeiten | Quelltext bearbeiten]Gegeben sei die lineare gewöhnliche Differentialgleichung zweiter Ordnung
- .
Für die Wronski-Determinante von zwei Lösungen der Differentialgleichung gilt dann
- .
Beweis
[Bearbeiten | Quelltext bearbeiten]Nach Definition ist , worin ein Fundamentalsystem für die Differentialgleichung
- mit
ist. Gemäß der liouvilleschen Formel gilt
- .
Anwendung
[Bearbeiten | Quelltext bearbeiten]Die abelsche Identität erlaubt es, die Wronski-Determinante bei bekanntem Wert an der Stelle für alle anderen zu berechnen. Insbesondere ist die Wronski-Determinante konstant, wenn gilt. Aufgrund der Beziehung, die die Wronski-Determinante zwischen zwei linear unabhängigen Lösungen herstellt, erlaubt sie unter Umständen, die eine aus der anderen zu berechnen.
Literatur
[Bearbeiten | Quelltext bearbeiten]- W. Boyce, R. Di Prima: Elementary differential equations and boundary value problems. Wiley, New York 1969.
- Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (mat.univie.ac.at).
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Eric W. Weisstein: Abel’s Differential Equation Identity. In: MathWorld (englisch).