Homoskedastizität und Heteroskedastizität

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Homoskedastizität)
Zur Navigation springen Zur Suche springen
Homoskedastizität (links):
Die Streuung der Punkte um die Gerade in vertikaler Richtung ist konstant.

Heteroskedastizität (rechts):
Hier wird die Streuung der Punkte um die Gerade nach rechts hin größer.

Heteroskedastizität, auch Varianzheterogenität oder Heteroskedastie (altgriechisch σκεδαστός skedastós, „zerstreut“, „verteilt“, „zerstreubar“), bedeutet in der Statistik, dass die Varianz der Störterme nicht konstant ist. Wenn die Varianz der Störterme (und somit die Varianz der erklärten Variablen selbst) für alle Ausprägungen der exogenen Prädiktorvariablen nicht signifikant unterschiedlich ist, liegt Homoskedastizität (auch Varianzhomogenität oder Homoskedastie) vor.

Der Begriff spielt insbesondere in der Ökonometrie und der empirischen Forschung eine wichtige Rolle. Die Homoskedastizitätsannahme ist ein wichtiger Bestandteil der Gauß-Markow-Annahmen.

Homoskedastizität und Heteroskedastizität

[Bearbeiten | Quelltext bearbeiten]

In der Statistik spielt die Verteilung von Merkmalen eine entscheidende Rolle. Beispielsweise hat man in der Regressionsanalyse eine Menge von Datenpunkten gegeben, in die eine Gerade möglichst passgenau eingelegt wird. Die Abweichungen der Datenpunkte von der Geraden werden Störterme oder Residuen genannt und sind wahrscheinlichkeitstheoretisch jeweils Zufallsvariablen. Homoskedastie bzw. Heteroskedastie bezieht sich auf die Verteilung dieser Störterme, die mittels der Varianz erfasst wird. Haben diese Störterme alle die gleiche Varianz, liegt Varianzhomogenität (d. h. Homoskedastie) vor

beziehungsweise .
Heteroskedastizität: Die Streuung der Punkte um die Gerade wächst nach rechts hin stärker als linear an.

Heteroskedastizität dagegen bedeutet, dass Varianz der Störterme bedingt auf die erklärenden Variablen nicht konstant ist:[1]

.

In diesem Fall weisen die Störterme nicht die gleiche Varianz auf und folglich führt die gewöhnliche Methode der kleinsten Quadrate nicht zu effizienten Schätzwerten für die Regressionskoeffizienten. Dies bedeutet, dass diese Schätzwerte nicht die kleinstmögliche Varianz aufweisen. Die Standardfehler der Regressionskoeffizienten werden verzerrt geschätzt[2] und außerdem ist dann eine naive Anwendung des t-Tests nicht möglich; die t-Werte sind nicht mehr brauchbar. Abhilfe schafft in vielen Fällen eine geeignete Datentransformation: Herrscht Heteroskedastizität, kann es durchaus sinnvoll sein, die Daten mittels Anwendung des Logarithmus oder der Quadratwurzel zu transformieren, um Homoskedastizität zu erreichen. Diese führt dann zur korrekten Verwendung des Satzes von Gauß-Markow.

Praktisch tritt Heteroskedastizität auf, wenn die Streuung der abhängigen Variablen von der Höhe der erklärenden Variablen abhängt. Zum Beispiel ist mit einer größeren Streuung der Ausgaben im Urlaub zu rechnen, wenn das verfügbare Monatseinkommen höher ist.[3]

Folgen von Heteroskedastizität bei linearer Regression

[Bearbeiten | Quelltext bearbeiten]

Heteroskedastizität in Zeitreihen

[Bearbeiten | Quelltext bearbeiten]

Ein typisches Beispiel für Heteroskedastizität ist, wenn bei einer Zeitreihe die Abweichungen von der Trendgeraden mit Fortlauf der Zeit steigen (z. B. für die Treffgenauigkeit bei der Wettervorhersage: je weiter in der Zukunft, desto unwahrscheinlicher ist eine genaue Prognose). Allerdings können auch in Zeitreihen ohne konstante Varianz bestimmte charakteristische Auffälligkeiten wie z. B. Volatilitätscluster beobachtet werden. Deshalb wurde im Rahmen von Volatilitätsmodellen versucht, dem Verlauf der Varianz eine systematische Erklärung zu Grunde zu legen.

Heteroskedastizität bei der linearen Regression

[Bearbeiten | Quelltext bearbeiten]
Lineare Regression und Residualdiagramm bei den Boston-Housing-Daten.

Heteroskedastizität kann bei einer einfachen linearen Regression auftreten. Dies ist ein Problem, da in der klassischen linearen Regressionsanalyse Homoskedastizität der Residuen vorausgesetzt wird. Die untenstehende Grafik zeigt die Variablen mittlere Raumzahl pro Haus (X) sowie mittlerer Kaufpreis pro Haus (Y) für (fast) jeden Distrikt in Boston (Boston-Housing-Daten). Die Grafik Lineare Regression zeigt den Zusammenhang zwischen den beiden Variablen. Die rote Linie zeigt das Residuum für die ganz rechte Beobachtung, also die Differenz zwischen dem beobachteten Wert (runder Kreis) und dem geschätzten Wert auf der Regressionsgerade.

In der Grafik Heteroskedastische Residuen sieht man die Residuen für alle Beobachtungen. Betrachtet man die Streuung der Residuen im Bereich von 4–5 Räumen oder im Bereich ab 7,5 Räumen, so ist sie größer als die Streuung in dem Bereich 5–7,5 Räume. Die Streuung der Residuen in den einzelnen Bereichen ist also unterschiedlich, also heteroskedastisch. Wäre die Streuung der Residuen in allen Bereichen gleich, dann wäre sie homoskedastisch.

Bekannte Verfahren, um die Nullhypothese „Homoskedastizität liegt vor“ zu überprüfen, sind der Goldfeld-Quandt-Test, der White-Test, der Levene-Test, der Glejser-Test, der RESET-Test nach Ramsey und der Breusch-Pagan-Test.

  • J. Wooldridge: Introductory Econometrics. A Modern Approach. 5. Auflage. Mason, Ohio 2013, ISBN 978-1-111-53439-4.
  • M.-W. Stoetzer: Regressionsanalyse in der empirischen Wirtschafts- und Sozialforschung. Band 1: Eine nichtmathematische Einführung mit SPSS und Stata. Berlin 2017, ISBN 978-3-662-53823-4, S. 135–147.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Jeffrey Wooldridge: Introductory Econometrics. A Modern Approach. 5. Auflage. South-Western, Cengage Learning, Mason, Ohio 2013, ISBN 978-1-111-53439-4, S. 849.
  2. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/Heidelberg 2018, ISBN 978-3-662-56657-2, S. 814.
  3. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/Heidelberg 2018, ISBN 978-3-662-56657-2, S. 813.
  4. Jeffrey Wooldridge: Introductory Econometrics. A Modern Approach. 5. Auflage. South-Western, Cengage Learning, Mason, Ohio 2013, ISBN 978-1-111-53439-4, S. 49–54.