Levene-Test

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Verteilung des Nettoeinkommens in Deutschland 2008 (ALLBUS) nach Geschlecht und Geburtsmonats des Befragten.

Der Levene-Test[1] bezeichnet in der Statistik einen Signifikanztest, der auf Gleichheit der Varianzen (Homoskedastizität) von zwei oder mehr Grundgesamtheiten (Gruppen) prüft. Der Brown–Forsythe Test ist aus dem Levene-Test abgeleitet.

Ähnlich dem Bartlett-Test prüft der Levene-Test die Nullhypothese darauf, dass alle Gruppenvarianzen gleich sind. Die Alternativhypothese lautet demnach, dass mindestens ein Gruppenpaar ungleiche Varianzen besitzt (Heteroskedastizität):

Nullhypothese:
Alternativhypothese:   für mindestens ein Gruppenpaar mit

Befindet sich der Signifikanzwert des Tests unter einem zuvor bestimmten Niveau, so sind die Unterschiede in den Varianzen der Stichproben überzufällig (signifikant) und die Nullhypothese der Varianzgleichheit kann abgelehnt werden.[2]

Beispiel[Bearbeiten | Quelltext bearbeiten]

Die Grafik oben zeigt die Verteilung des Nettoeinkommens nach Geschlecht und Geburtsmonat. Die Ausgabe von car::leveneTest in R:

  • Der Levene-Test nach Geschlecht ergibt einen p-Wert kleiner als und ist damit hochsignifikant:
Levene's Test for Homogeneity of Variance
        Df F value    Pr(>F)    
group    1  106.09 < 2.2e-16 ***
      2404                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Bei einem solchen p-Wert kann davon ausgegangen werden, dass die Varianzen in der Population unterschiedlich sind. Die Nullhypothese gleicher Varianzen wird entsprechend verworfen.

  • Der Levene-Test nach Geburtsmonat ergibt einen p-Wert von und ist bei einem vorgegebenen Signifikanzniveau von 5 % nicht signifikant:
Levene's Test for Homogeneity of Variance
        Df F value Pr(>F)  
group   11  1.6621  0.076 .
      2384                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Teststatistik[Bearbeiten | Quelltext bearbeiten]

Sind ( und ) die Stichprobenvariablen und

mit Anzahl der Gruppen (Stichproben), die Anzahl der Beobachtungen in Gruppe und der Stichprobenmittelwert der Gruppe . Dann ist die Teststatistik

verteilt mit die Anzahl aller Beobachtungen

,

der Stichprobenmittelwert über alle Gruppen und der Stichprobenmittelwert über Gruppe .

Die Teststatistik bzgl. ist identisch mit der Teststatistik der einfaktoriellen ANOVA (Test auf Gleichheit von Gruppenmittelwerten). Durch die Transformation von auf sind die Gruppenmittelwerte

robuste Schätzfunktionen der Gruppenvarianzen. Die Normalverteilungsannahme für die ANOVA gilt zwar nicht, jedoch haben die oft eine rechtsschiefe Verteilung für die die ANOVA angewandt werden kann.[3]

Brown–Forsythe-Test[Bearbeiten | Quelltext bearbeiten]

Im Brown–Forsythe-Test wird bei Berechnung von statt des Gruppenmittelwertes der Gruppenmedian benutzt.[4] Um eine gute Teststärke zu erhalten, muss der Lageparameter in Abhängigkeit von der zugrunde liegenden Verteilung gewählt werden. Brown und Forsythe zeigten in Simulationsstudien, dass der Mittelwert eine gute Wahl ist, wenn die Verteilung symmetrisch und „normale“ Verteilungsenden (Exzess 0) hat, z. B. einer Normalverteilung ähnlich ist. Der Median sollte benutzt werden, wenn die Verteilungen stark schief sind, und der getrimmte Mittelwert, wenn die Verteilung schwere Verteilungsenden hat (Exzess<0).

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Howard Levene: Robust tests for equality of variances. In: Ingram Olkin, Harold Hotelling et al (Hrsg.): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, 1960, S. 278-292..
  2. Jürgen Janssen, Wilfried Laatz: Statistische Datenanalyse mit SPSS für Windows. 8. Auflage. Springer Verlag, 2007, S. 246.
  3. Maxwell J. Roberts, Riccardo Russo: Student's Guide to Analysis of Variance. Routledge Chapman & Hall, 1999, ISBN 978-0-415-16565-5, S. 71.
  4. Morton B. Brown, Alan B. Forsythe: Robust tests for equality of variances. In: Journal of the American Statistical Association. Band 69, 1974, S. 364–367, doi:10.1080/01621459.1974.10482955.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Biostatistik: Eine Einführung für Biowissenschaftler. (2008). München: Pearson Studium. S. 150-154.

Weblinks[Bearbeiten | Quelltext bearbeiten]