Mehrkörpersimulation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Die Mehrkörpersimulation (MKS) ist eine Methode der numerischen Simulation, bei der reale Mehrkörpersysteme durch mehrere unverformbare Körper abgebildet werden. Zusätzlich wird die Bewegungsfähigkeit der Körper zueinander durch idealisierte kinematische Gelenke eingeschränkt.

Varianten[Bearbeiten]

Grundsätzlich wird bei der Mehrkörpersimulation zwischen dynamischer und kinematischer Simulation unterschieden. Bei der einfacheren Kinematik haben die Systeme keine dynamischen Freiheitsgrade. Meist wird der letzte Freiheitsgrad eines mechanischen Systems mit einer Zwangsbewegung gesperrt, wodurch dieser verschwindet. Eine Kinematik lässt sich dadurch charakterisieren, dass jeder Betriebspunkt als Funktion der gegebenen Zwangsbewegung betrachtet werden kann. Dabei ist die Zeit bzw. das Geschwindigkeitsprofil, das zu dieser Position geführt hat, unerheblich.

In einem dynamischen Modell kann ein Betriebspunkt nur durch Auflösen einer Differentialgleichung ermittelt werden. Nur bei extrem einfachen Systemen kann dies analytisch geschehen. Daher besitzen Mehrkörpersimulationsprogramme immer einen oder mehrere Integratoren, z. B. Runge-Kutta-Verfahren.

Die Mehrkörpersimulation ist eine sehr grobe Vereinfachung der realen Welt. Um Details eines Systems genauer abzubilden, wird das Verfahren daher oft mit anderen Simulationsverfahren kombiniert. Dabei werden die Methoden der Finite-Elemente-Methode (FE), numerischen Strömungssimulation, Thermodynamik, Regelungstechnik und spezielle Programme für Reifen, Gummielemente, Hydrolager und weitere in das Mehrkörpermodell integriert.

Als besondere Methode in Verbindung mit der Mehrkörpersimulation wäre die "modale Reduktion" zu erwähnen. Hierbei wird ein Körper, dessen Flexibilität nicht zu vernachlässigen ist, anhand seiner externen Eigenschaften abgebildet. Hierzu muss jedoch vor der eigentlichen Simulation festgelegt werden, wo die Anschlusspunkte an das restliche System sind. Dank schneller Prozessoren und moderner Formulierungen des Gleichungssystems wird jedoch die direkte Integration von flexiblen Körpern immer beliebter. Dabei werden die Netze, wie sie aus der FE bekannt sind, und die Mehrkörpersysteme direkt in einem Gleichungssystem zusammengefasst.

Funktion[Bearbeiten]

Kinematische Systeme sind Bestandteil unseres täglichen Lebens. Sie reichen von einfachen Pendeln bis zu kompletten Fahrzeugen. Mit der Mehrkörpersimulation kann der Bewegungsablauf solcher Systeme berechnet und analysiert werden. Die Simulation liefert Ergebnisse über Kräfte, Geschwindigkeiten, Beschleunigungen und Kontakte der Körper.

Im Automobilbereich werden MKS-Systeme seit mehreren Jahren intensiv eingesetzt, z. B. zur Analyse von Fahrwerken. Hierfür gibt es besondere Erweiterungen der MKS-Programme. Ein weiteres Beispiel für den Einsatz der MKS ist die Analyse von Ladespielen bei Löffelbaggern. Es werden z. B. die dynamischen Belastungen in den Lagerpunkten berechnet.

Das MKS-Modell kann zusätzlich durch die Integration des Hydrauliksystems erweitert werden. Kräfte für die Bewegung des Auslegers werden dann aus der Hydrauliksimulation bereitgestellt. Die Integration einer FE-Analyse in das MKS-Modell ermöglicht eine Berechnung der Bauteilbelastungen während der Bewegung.

Anwendungsgebiete[Bearbeiten]

  • Bewegungsanalyse von komplexen kinematischen Systemen
  • Ermittlung dynamischer Bauteilbelastungen
  • Bereitstellung dynamischer Lastannahmen für die FEM
  • Lokalisierung von Konstruktionsdefiziten existierender Maschinen
  • Realisierung des Virtual Prototyping

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Sebastian von Hoerner: Die numerische Integration des n-Körper-Problemes für Sternhaufen. I. In: Zeitschrift für Astrophysik. 50, 1960, S. 184. Bibcode: 1960ZA.....50..184V.
  • Sebastian von Hoerner: Die numerische Integration des n-Körper-Problemes für Sternhaufen. II. In: Zeitschrift für Astrophysik. 57, 1963, S. 47. Bibcode: 1963ZA.....57...47V.