Pseudokonvexe Funktion

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Pseudokonvexe Funktionen spielen in der nichtlinearen Optimierung eine entscheidende Rolle. Die starke Voraussetzung der Konvexität an Zielfunktionen oder Nebenbedingungen ist in vielen Fällen nicht erfüllt. Mit abschwächenden Konvexitätsbegriffen wie Quasikonvexität oder Pseudokonvexität versucht man dann gewisse Eigenschaften zu retten, um sie in der Algorithmik einzusetzen. Im Folgenden sei eine reellwertige Funktion auf einer offenen Teilmenge differenzierbar. Falls die Funktion die folgende Eigenschaft erfüllt, so heißt sie pseudokonvex: Für alle gilt:

Aus folgt .

Gilt sogar

Aus und folgt .

so nennt man die Funktion strikt pseudokonvex.[1] Dabei bezeichnet den Gradienten von an der Stelle .

Ist (also ) so lautet die Bedingung zur Pseudokonvexität einfach:

Aus folgt .

Eine Funktion heißt pseudokonkav, wenn das Negative der Funktion pseudokonvex ist.

Beispiele und Eigenschaften[Bearbeiten | Quelltext bearbeiten]

blau: , rot:

Differenzierbare konvexe Funktionen sind pseudokonvex. Die Funktionen

und

sind Beispiele für pseudokonvexe Funktionen , die nicht konvex sind.[2]

Pseudokonvexe Funktionen auf konvexen Bereichen sind strikt quasikonvex.[3][4]

Bedeutung für die Optimierung[Bearbeiten | Quelltext bearbeiten]

Verschwindet die Ableitung einer pseudokonvexen Funktion im Punkt , so liegt dort ein Minimum vor. Das folgt sofort aus der Definition, denn in diesem Fall ist die Prämisse unabhängig von erfüllt und es folgt . Die Definition der Pseudokonvexität ist gerade so angelegt, dass das gilt.[5]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Karl-Heinz Borgwardt, Optimierung, Operations Research, Spieltheorie, Birkhäuser, Basel 2001, ISBN 3-7643-6519-6, Definition 12.14
  2. L. Collatz, W. Wetterling: Optimierungsaufgaben, Springer-Verlag (1966), ISBN 0-387-05616-5, Absatz 6.4
  3. L. Collatz, W. Wetterling: Optimierungsaufgaben, Springer-Verlag (1966), ISBN 0-387-05616-5, §6, Satz 10
  4. D. Jungnickel: Optimierungsmethoden, Springer-Verlag (2008), ISBN 3-540-76789-4, Korollar 3.4.14
  5. D. Jungnickel: Optimierungsmethoden, Springer-Verlag (2008), ISBN 3-540-76789-4, Satz 3.4.15