Satz von Wolstenholme

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Satz von Wolstenholme (nach Joseph Wolstenholme) ist eine Aussage aus dem mathematischen Teilgebiet der Zahlentheorie. Er lautet:

Ist p \geq 5 eine Primzahl, so hat die harmonische Zahl

H(p-1) = 1 + \frac12 + \frac13 + \frac14 + \ldots + \frac1{p-1}

einen durch p^2 teilbaren Zähler (in vollständig gekürzter und daher auch in jeder anderen Darstellung als Quotient zweier ganzer Zahlen).[1][2]

Beispiele, andere Formulierungen, Folgerungen[Bearbeiten]

Zur Veranschaulichung einige Beispiele:

  • p=7\text{:}\quad 1 + \tfrac12 + \tfrac13 + \tfrac14 + \tfrac15 + \tfrac16 = \tfrac{49}{20}, der Zähler 49=1\cdot 7^2 ist durch 7^2 teilbar.
  • p=13\text{:}\quad 1 + \tfrac12 + \tfrac13 + \tfrac14 + \tfrac15 + \tfrac16 + \tfrac17 + \tfrac18 + \tfrac19 + \tfrac1{10} + \tfrac1{11} + \tfrac1{12} = \tfrac{86021}{27720}, der Zähler 86021=509\cdot 13^2 ist durch 13^2 teilbar.

Der Satz von Wolstenholme ist äquivalent zu der Aussage, dass der Zähler von

1 + \frac1{2^2} + \frac1{3^2} + \frac1{4^2} + \ldots + \frac1{(p-1)^2}

durch p teilbar ist.[3]

Eine Folgerung aus dem Satz ist die Kongruenz

\binom{2p}{p} \equiv 2 \mod{p^3},

die auch in der Form

\binom{2p-1}{p-1} \equiv 1 \mod{p^3}

geschrieben werden kann.

Wolstenholme-Primzahlen[Bearbeiten]

Eine Wolstenholme-Primzahl p ist eine Primzahl, die eine stärkere Fassung des Satzes von Wolstenholme erfüllt, genauer: die eine der folgenden äquivalenten Bedingungen erfüllt:[4]

  • Der Zähler von
1 + \frac12 + \frac13 + \dots + \frac1{p-1}
ist durch p^3 teilbar.
  • Der Zähler von
1 + \frac1{2^2} + \frac1{3^2} + \dots + \frac1{(p-1)^2}
ist durch p^2 teilbar.
  • Es gilt die Kongruenz
\binom{2p}{p} \equiv 2 \mod{p^4}.
  • Es gilt die Kongruenz
\binom{2p-1}{p-1} \equiv 1 \mod{p^4}.

Die beiden bisher einzigen bekannten Wolstenholme-Primzahlen sind 16843 (Selfridge und Pollack 1964)[5] und 2124679 (Buhler, Crandall, Ernvall und Metsänkylä 1993)[6]. Jede weitere Wolstenholme-Primzahl müsste größer als 109 sein.[7] Es wurde die Vermutung aufgestellt, dass unendlich viele Wolstenholme-Primzahlen existieren, und zwar etwa \log(\log(x)) unterhalb x (McIntosh 1995).[8]

Verwandter Begriff[Bearbeiten]

Betrachtet man nur Summanden mit ungeradem Nenner, also die Summe

1 + \frac13 + \frac15 + \dots + \frac1{p-2}

für eine Primzahl p \geq 3, so ist der Zähler genau dann durch p teilbar, wenn die stärkere Form

2^{p-1} \equiv 1 \mod{p^2}

des Satzes von Euler-Fermat gilt.[9] Derartige Primzahlen heißen Wieferich-Primzahlen.

Geschichte[Bearbeiten]

Aus dem Satz von Wilson folgt die Kongruenz

\binom{np-1}{p-1} \equiv 1 \pmod{p}

für jede Primzahl p und jede natürliche Zahl n.

Charles Babbage bewies 1819[10] die Kongruenz

\binom{2p-1}{p-1} \equiv 1 \pmod{p^2}

für jede Primzahl p>2.

Joseph Wolstenholme bewies 1862[1] die Kongruenz

\binom{2p-1}{p-1} \equiv 1 \pmod{p^3}

für jede Primzahl p>3.

Literatur[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. a b J. Wolstenholme: On certain properties of prime numbers. In: The quarterly journal of pure and applied mathematics 5. 1862, S. 35–39 (englisch).
  2. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 112 (englisch; Theorem 115).
  3. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 114 (englisch; Theorem 117).
  4. Anthony Gardiner: Four problems on prime power divisibility. In: The American Mathematical Monthly 95. Dezember 1988, S. 926–931 (englisch).
  5. J. L. Selfridge, B. W. Pollack: Fermat’s last theorem is true for any exponent up to 25,000. In: Notices of the AMS 11. 1964, S. 97 (englisch; nur Zusammenfassung; 16843 nicht ausdrücklich angegeben).
  6. J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä: Irregular primes and cyclotomic invariants to four million. In: Mathematics of Computation 61. Juli 1993, S. 151–153 (englisch).
  7. Richard J. McIntosh, Eric L. Roettger: A search for Fibonacci-Wieferich and Wolstenholme primes. (PDF-Datei, 151 kB). In: Mathematics of Computation 76. Oktober 2007, S. 2087–2094 (englisch).
  8. Richard J. McIntosh: On the converse of Wolstenholme’s theorem. (PDF-Datei, 190 kB). In: Acta Arithmetica 71. 1995, S. 381–389 (englisch).
  9. Hardy, Wright: An introduction to the theory of numbers. 2008, S. 135 (englisch; Theorem 132).
  10. Charles Babbage: Demonstration of a theorem relating to prime numbers. In: The Edinburgh philosophical journal 1. 1819, S. 46–49 (englisch; „n+1.n+2.n+3...“ bedeutet „(n+1)(n+2)(n+3)…“; die Umkehrung wird auch behauptet: „otherwise it is not“, aber nicht bewiesen und ist falsch für Quadrate von Wolstenholme-Primzahlen).

Weblinks[Bearbeiten]