Shelterin

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Shelterin (von englisch shelter, dt. ‚Schutz, Obdach‘) ist ein Proteinkomplex an den Enden der Telomere von Chromosomen und dienen dem Schutz und der Regulation der Länge der Telomere.[1][2]

Shelterin kommt bei den meisten Eukaryoten vor. Bei verschiedenen Hefen (bei Schizosaccharomyces pombe, nicht aber Saccharomyces cerevisiae) und allen Säugetieren besteht Shelterin aus sechs Proteinen.[3][4][5] Durch Bindung an die Telomere wird ein Umbau der Telomere durch eine DNA-Reparatur freistehender Enden von DNA und eine Fusion zweier Chromosomenenden vermieden.[6]

Shelterin bei Säugetieren

[Bearbeiten | Quelltext bearbeiten]

Der Proteinkomplex Shelterin besteht aus TRF1, TRF2, RAP1, TIN2, POT1 und TPP1.[7]

TRF1 (Telomeric Repeat binding Factor 1) und TRF2 binden unabhängig voneinander an Telomere verhindern gemeinsam deren Verlängerung durch die Telomerase.[7][5] TRF1 bindet Helicasen bei Verlängerungen der Telomere. An TRF1 binden außer den Proteinen des Shelterins auch die Tankyrase (PARP-Modifikation des TRF1, Schutz, Auflösung des Komplexes), PINX1 (Telomeraseinhibitor), ATM (TRF1-Phosphorylierung, Regulation der Telomerlänge), Ku70/80 (homology-directed repair-Inhibition), FBX4/Nucleostemin (TRF1-Ubiquitinierung und Abbau), PIN1/GNL3L (TRF1-Faltung, Dimerisierung).[7]

TRF2 verhindert eine Aktivierung des Proteins Ataxia teleangiectatica mutated (ATM), welches die DNA-Reparatur bei einem Doppelstrangbruch einleitet.[5] Bei Reparaturen an Telomeren ist TRF2 beteiligt.[8] An TRF2 binden neben den Proteinen des Shelterins auch Apollo (am einzelsträngigen Ende), der ORC-Komplex (Telomerschutz), ATM (Inhibiert durch Bindung an TRF2), der MRE11-Komplex (am einzelsträngigen Ende), XPF-ERCC1 (am einzelsträngigen Ende), WRN/FEN1 (chromosomale Replikation, Hemmung von T-SCE), Ku70/80 (HDR-Inhibition parallel zu RAP1, Unterdrückung von t-circles), PNUTS (Regulation der Telomerlänge) und MCPH1 (Telomerschutz).[7] Über eine Bindung von TRIP6/LPP kann TRF2 durch die Argininmethylase PRMT1 modifiziert werden.[7]

TIN2 bindet Telomer-einzelstrangbindende Proteine an die Telomere.[9] TIN2 (TRF1 Interacting Nuclear factor 2) bindet an TRF1, TRF2 und POT1.[4]

POT1 (Protector Of Telomeres 1) bindet an einzelsträngige Telomere und verhindert durch Bindung eine Aktivierung des Proteins Ataxia telangiectasia and Rad3 related (ATR, aktiviert bei Doppelstrangbrüchen).[5] Während Menschen nur POT1 besitzen, weisen Mäuse POT1a und POT1b auf.[10]

Das RAP1 (Repressor/Activator protein 1) bindet an TRF2 und verstärkt dessen Aktivität.[4] Unabhängig vom Shelterinkomplex reguliert RAP1 auch die Transkription und ist am NF-κB-Signalweg beteiligt.[5]

TPP1 (synonym TINT1, PTOP, PIP1 — POT1-TIN2 organizing protein) bindet an POT1.[9][8] Bei einer Verlängerung der Telomere bindet TPP1 die Telomerase an die Telomere.[11][12][6] Eine Deletion des TPP1 führt zu einer ATR-vermittelten DNA-Reparatur.[10] Neben den Proteinen des Shelterins bindet TPP1 wie auch POT1 an ATR.[7]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. R. Diotti, D. Loayza: Shelterin complex and associated factors at human telomeres. In: Nucleus (Austin, Tex.). Band 2, Nummer 2, 2011 Mar-Apr, ISSN 1949-1042, S. 119–135, doi:10.4161/nucl.2.2.15135, PMID 21738835, PMC 3127094 (freier Volltext).
  2. M. P. Longhese, S. Anbalagan, M. Martina, D. Bonetti: The role of shelterin in maintaining telomere integrity. In: Frontiers in bioscience (Landmark edition). Band 17, 2012, ISSN 1093-4715, S. 1715–1728, PMID 22201831.
  3. T. Miyoshi, J. Kanoh, M. Saito, F. Ishikawa: Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. In: Science. 320. Jahrgang, Nr. 5881, 2008, S. 1341–1344, doi:10.1126/science.1154819, PMID 18535244.
  4. a b c Nandakumar J1, Cech TR: Finding the end: recruitment of telomerase to telomeres. In: Nature Reviews Molecular Cell Biology. 14. Jahrgang, Nr. 2, 2013, S. 69–82, doi:10.1038/nrm3505, PMID 23299958, PMC 3805138 (freier Volltext).
  5. a b c d e Sfeir A: Telomeres at a glance. In: Journal of Cell Science. 125. Jahrgang, Pt 18, 2012, S. 4173–4178, doi:10.1242/jcs.106831, PMID 23135002.
  6. a b M. Rajavel, M. R. Mullins, D. J. Taylor: Multiple facets of TPP1 in telomere maintenance. In: Biochimica et Biophysica Acta. Band 1844, Nummer 9, September 2014, ISSN 0006-3002, S. 1550–1559, doi:10.1016/j.bbapap.2014.04.014, PMID 24780581, PMC 4112156 (freier Volltext).
  7. a b c d e f Diotti R1, Loayza D: Shelterin complex and associated factors at human telomeres. In: NUCLEUS. 2. Jahrgang, Nr. 2, 2011, S. 119–135, doi:10.4161/nucl.2.2.15135, PMID 21738835, PMC 3127094 (freier Volltext).
  8. a b O’Connor MS1, Safari A, Xin H, Liu D, Songyang Z: A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. In: Proceedings of the National Academy of Sciences of the United States of America. 103. Jahrgang, Nr. 32, 2006, S. 11874–11879, doi:10.1073/pnas.0605303103, PMID 16880378, PMC 1567669 (freier Volltext).
  9. a b Kibe T1, Osawa GA, Keegan CE, de Lange T: Telomere protection by TPP1 is mediated by POT1a and POT1b. In: Molecular and Cellular Biology. 30. Jahrgang, Nr. 4, 2010, S. 1059–1066, doi:10.1128/MCB.01498-09, PMID 19995905, PMC 2815557 (freier Volltext).
  10. a b Martínez P1, Blasco MA: Role of shelterin in cancer and aging. In: Aging Cell. 9. Jahrgang, Nr. 5, 2010, S. 653–666, doi:10.1111/j.1474-9726.2010.00596.x, PMID 20569239.
  11. J. Nandakumar, T. R. Cech: Finding the end: recruitment of telomerase to telomeres. In: Nature reviews. Molecular cell biology. Band 14, Nummer 2, Februar 2013, ISSN 1471-0080, S. 69–82, doi:10.1038/nrm3505, PMID 23299958, PMC 3805138 (freier Volltext).
  12. E. Abreu, E. Aritonovska, P. Reichenbach, G. Cristofari, B. Culp, R. M. Terns, J. Lingner, M. P. Terns: TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. In: Molecular and Cellular Biology. 30. Jahrgang, Nr. 12, 2010, S. 2971–2982, doi:10.1128/MCB.00240-10, PMID 20404094, PMC 2876666 (freier Volltext).