Weierstraßscher Produktsatz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der weierstraßsche Produktsatz für \mathbb{C} besagt, dass zu einer vorgegebenen Nullstellenverteilung in \mathbb{C} eine holomorphe Funktion mit genau diesen Nullstellen existiert. Die Funktion kann als sogenanntes Weierstraß-Produkt explizit konstruiert werden. Der Satz wurde 1876 von Karl Weierstraß gefunden.

Motivation[Bearbeiten]

Zu endlich vielen Nullstellen a_1, \dots a_n \; \in \mathbb{C} kann man sofort ein Polynom hinschreiben, welches das gestellte Problem löst, beispielsweise \left(1 - \frac{z}{a_1}\right) \cdots \left(1 - \frac{z}{a_n} \right). Im Falle (abzählbar) unendlich vieler Nullstellen wird das Produkt im Allgemeinen nicht mehr konvergieren. Ausgehend von der Identität 1 - z = \exp(\log(1 - z)) = \exp\left(- \sum_{k=1}^\infty \frac{z^k}{k}\right), \quad z \in \mathbb{C}, |z| < 1, führte Weierstraß deshalb "konvergenzerzeugende" Faktoren ein, indem er die Reihenentwicklung abbrach und Faktoren E_n(z) := (1-z) \exp\left(\sum_{k=1}^n \frac{z^k}{k}\right) definierte. E_n hat nur eine Nullstelle bei 1, kann aber im Gegensatz zu 1 - z auf jeder kompakten Teilmenge des Einheitskreises beliebig nahe an 1 liegen, sofern n groß genug gewählt wird. Dadurch kann auch die Konvergenz eines unendlichen Produktes erreicht werden.

Weierstraß-Produkt[Bearbeiten]

Es sei D ein positiver Divisor im Bereich \Omega \subseteq \mathbb{C} und a_k eine so gewählte Folge, dass D = D(0) \cdot 0 + \sum_k a_k; Das heißt, die Folge durchläuft mit Ausnahme des Nullpunktes alle Punkte des Trägers von D mit der nötigen Multiplizität. Sie heißt die zum Divisor D gehörende Folge. Ein Produkt z^{D(0)} \prod_{k \geq 1} f_k(z) heißt Weierstrass-Produkt zum Divisor D, falls gilt:

  • f_k holomorph in \Omega
  • f_k hat genau eine Nullstelle, und zwar in a_k und von der Multiplizität 1
  • Das Produkt \textstyle \prod_k f_k konvergiert normal auf jeder kompakten Teilmenge von \Omega.

Produktsatz in \mathbb{C}[Bearbeiten]

Zu jedem positiven Divisor D in \mathbb{C} existieren Weierstrass-Produkte der Form z^{D(0)} \prod_{k \geq 1} E_{k-1}\left(\frac{z}{a_k}\right). Dabei sei a_k die zum Divisor D gehörende Folge.

Folgerungen in \mathbb{C}[Bearbeiten]

  • Zu jedem Divisor gibt es eine meromorphe Funktion mit den dadurch vorgegebenen Null- und Polstellen. Jeder Divisor ist ein Hauptdivisor.
  • Zu jeder meromorphen Funktion h gibt es zwei holomorphe Funktionen f, g ohne gemeinsame Nullstellen derart, dass h = f/g. Insbesondere ist der Körper der meromorphen Funktionen der Quotientenkörper des Integritätsrings der holomorphen Funktionen.
  • Im Ring der holomorphen Funktionen besitzt jede nicht-leere Teilmenge einen größten gemeinsamen Teiler, obwohl der Ring nicht faktoriell ist.

Verallgemeinerung für beliebige Bereiche[Bearbeiten]

Es sei \Omega \subseteq \mathbb{C} ein Bereich und D ein positiver Divisor auf \Omega mit Träger T und es bezeichne T' := \overline{T}\!\setminus\!T die Menge aller Häufungspunkte von T in \mathbb{C}. Dann existieren zum Divisor D Weierstraß-Produkte in \mathbb{C}\!\setminus\!T'. Sie konvergieren im Allgemeinen also auf einem größeren Bereich als \Omega.

Verallgemeinerung für Steinsche Mannigfaltigkeiten [Bearbeiten]

Eine erste Verallgemeinerung des Produktsatzes für andere komplexe Mannigfaltigkeiten gelang 1895 Pierre Cousin, der den Satz für Zylindergebiete im \mathbb{C}^n bewies. Aus diesem Grund wird die Frage, ob zu einem vorgegebenen Divisor eine passende meromorphe Funktion konstruiert werden kann, auch als Cousin-Problem bezeichnet.

Jean-Pierre Serre löste 1953 das Cousin-Problem endgültig und zeigte: In einer Steinschen Mannigfaltigkeit X ist ein Divisor genau dann der Divisor einer meromorphen Funktion, wenn seine Chernsche Kohomologieklasse in H^2(X, \mathbb{Z}) verschwindet. Insbesondere ist in einer Steinschen Mannigfaltigkeit mit H^2(X, \mathbb{Z}) = 0 jeder Divisor ein Hauptdivisor. Dies ist die unmittelbare Folgerung daraus, dass in Steinschen Mannigfaltigkeiten folgende Sequenz exakt ist, wobei \mathcal{D} die Garbe der Divisoren bezeichnet:

0 \to \mathcal{O}^*(X) \to \mathcal{M}^*(X) \to \mathcal{D}(X) \rightarrow H^2(X, \mathbb{Z}) \to 0

Literatur[Bearbeiten]

  • Reinhold Remmert, Georg Schumacher: Funktionentheorie 2. Springer, Berlin 2007, ISBN 978-3-540-57052-3.
  • Hans Grauert, Reinhold Remmert: Theory of Stein Spaces. Springer, Berlin 2004, ISBN 3-540-00373-8.