Satz von Peter-Weyl

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen.

Darstellungen auf kompakten Gruppen[Bearbeiten | Quelltext bearbeiten]

Sei eine kompakte topologische Gruppe. Für einen komplexen Hilbertraum heiße ein stetiger Gruppenhomomorphismus Darstellung der Gruppe, wobei mit der schwachen Operatortopologie versehen sei. Es lässt sich nun zeigen, dass jedes solche einen kompakten selbstadjungierten Vertauschungsoperator und damit als Eigenraum dieses Operators einen endlichdimensionalen, nichttrivialen invarianten Teilraum von besitzt. Daher ist jede irreduzible Darstellung einer kompakten Gruppe endlichdimensional und jede Darstellung lässt sich als direkte Summe von solchen darstellen, besitzt also eine Zerlegung in irreduzible Darstellungen.

Von besonderem Interesse ist die linksreguläre Darstellung ; diese ist durch definiert, wobei und eine bezüglich des linksinvarianten auf normierten Haarmaßes quadratintegrierbare Funktion ist. Man kann zeigen, dass für jedes solche die durch obige Formel gegebene Funktion wieder quadratintegrierbar ist und dass zwei fast überall gleiche Funktionen wieder auf fast überall gleiche Funktionen abbildet, insgesamt also tatsächlich einen Operator auf bestimmt, dessen Unitarität man leicht nachweisen kann. Analog ist die rechtsreguläre Darstellung durch und die zweiseitige Darstellung durch definiert.

Für jede Darstellung und ist , genannt Matrixkoeffizient, eine beschränkte stetige Funktion (siehe Fourier-Stieltjes-Algebra).

Fouriertransformation[Bearbeiten | Quelltext bearbeiten]

Aus allen irreduziblen Darstellungen von wähle man ein Repräsentantensystem bezüglich unitärer Äquivalenz. Einer jeden Darstellung entspricht eine Hilbertraum-Darstellung der Banach-*-Algebra mit der Faltung (die sogenannte Gruppenalgebra), sodass für alle die Gleichung

besteht. Da das Haarmaß auf einer kompakten Gruppe endlich ist, ist . Für eine Funktion ist die Fouriertransformation nun definiert als , dabei ist eine Abbildung von in die orthogonale Summe

der Räume von Matrizen auf , ausgestattet mit dem Hilbert-Schmidt-Skalarprodukt (dies ist im kompakten Fall stets möglich, da die Darstellungsräume endlichdimensional sind).

Satz[Bearbeiten | Quelltext bearbeiten]

Der Satz von Peter-Weyl besagt nun, dass die Fouriertransformation einer kompakten Gruppe bis auf gewisse konstante Faktoren unitär ist, und konstruiert die Umkehrabbildung. Genauer ist

unitär. Die Umkehrabbildung ist gegeben durch

,

wobei die Spur bezeichne und die Summe im Sinne unbedingter Konvergenz zu verstehen ist.

Teilaussagen[Bearbeiten | Quelltext bearbeiten]

Hier seien einige Teilaussagen angegeben, die mitunter zum Beweis herangezogen werden, und teilweise auch wiederum unmittelbar aus dem Satz von Peter-Weyl in der obigen Form folgen.

Die Räume sind paarweise orthogonale Teilräume von , somit sind auch die Unterräume paarweise orthogonal und der Operator ist ebenfalls unitär. Ist die Familie eine Orthonormalbasis von , so ist die Familie aller dyadischen Produkte eine Orthonormalbasis von und somit Orthonormalbasis von . Sind dementsprechend Orthonormalbasen für jedes gegeben, so bilden die Funktionen eine Orthonormalbasis von .

Die Darstellung sei definiert als äußeres Tensorprodukt mit der kontragredienten Darstellung, , konkret:

.

Der Operator ist nun ein Vertauschungsoperator zwischen und , d. h.

,

womit äquivalent zur zweiseitigen Darstellung eingeschränkt auf ist. Wählt man fest und normiert, so ist das Bild des Operators

invariant unter der linksregulären Darstellung, der (bei Einschränkung des Bildraumes) unitäre Operator

ist ein Vertauschungsoperator zwischen und , . Somit ist jede irreduzible Darstellung einer kompakten Gruppe äquivalent zu einer Teildarstellung der linksregulären Darstellung. Die Multiplizität der Darstellung in der linksregulären Darstellung, das heißt, wie oft sie in einer Zerlegung dieser in Irreduzible auftritt, ist gerade gleich der Dimension des Darstellungsraumes. Die Orthogonalprojektion ist dabei durch eine Faltung gegeben, . Diese Ergebnisse gelten völlig analog für die rechtsreguläre Darstellung, indem man statt und bei der Projektion die umgekehrte Faltung betrachtet.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Sei die Kreisgruppe. Da abelsch ist, ist jede irreduzible Darstellung ein Charakter, also eine Abbildung in die Kreisgruppe selbst. Diese sind gerade durch die Funktionen für gegeben. Für und gilt

und somit einfach . Dies ist nichts anderes als der bekannte -te Fourierkoeffizient zu . Der Satz von Peter-Weyl liefert (da der Darstellungsraum eindimensional ist, sind keine weiteren Skalierungen vonnöten) die Unitarität dieser Transformation in den Raum sowie die Umkehrung

.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Gerald Budge Folland: A Course in Abstract Harmonic Analysis. CRC Press, 1995, ISBN 0-8493-8490-7, S. 128 ff.
  • Anton Deitmar, Siegfried Echterhoff: Principles of Harmonic Analysis. Springer, 2009, ISBN 978-0-387-85468-7, S. 141 ff., doi:10.1007/978-0-387-85469-4.
  • Mitsuo Sugiura: Unitary Representations and Harmonic Analysis. 2. Auflage. North-Holland, 1990, ISBN 0-444-88593-5, S. 19 ff.
  • F. Peter, H. Weyl: Über die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Mathematische Annalen, Band 97, 1927, S. 737–755. (online)