Freier Fall

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Freier Fall (Begriffsklärung) aufgeführt.
Freier Fall in stroboskopischer Mehrfachbelichtung: Der Ball bewegt sich pro Zeiteinheit um jeweils zwei Längeneinheiten mehr fort, 1 + 3 + 5… (konstante Beschleunigung).

Der freie Fall ist in der klassischen Mechanik die Bewegung eines Körpers unter dem ausschließlichen Einfluss der Schwerkraft. Über den freien Fall wurde schon in der Antike spekuliert. Galileo Galilei (1564-1641) erforschte den freien Fall (wie auch die Pendelbewegung und vieles andere) und führte die schiefe Ebene als Versuchsanordnung ein. Seine Erkenntnis, dass die Bewegung im freien Fall unabhängig von Material und Größe des Körpers ist, erhob zum Prinzip der Äquivalenz von träger und schwerer Masse.

Albert Einstein nahm für seine Allgemeine Relativitätstheorie an, das natürliche Bezugssystem sei jenes, in dem der frei fallende Körper ruht. Danach ist der freie Fall völlig kräftefrei (schwerelos) und die Gravitationskraft eine Scheinkraft (starkes Äquivalenzprinzip). Seine Vorhersage, dass auch Licht „fällt“ – es breitet sich im fallenden Bezugssystem geradlinig aus –, bestätigte sich.

Der näherungsweise freie Fall ist ein einführendes Experiment im Physikunterricht. Bis sich der Luftwiderstand bemerkbar macht, handelt es sich um eine gleichmäßig beschleunigte Bewegung, unter Vernachlässigung des statischen Auftriebs wird dabei meist die Fallbeschleunigung g verwendet. Beim Fall mit Luftwiderstand ist die Beschleunigung allerdings nicht konstant, die Geschwindigkeit nähert sich einer Grenzgeschwindigkeit an.

Abweichungen vom freien Fall sind Gegenstand der Außenballistik.

Geschichte[Bearbeiten]

Demonstration des freien Falls auf dem Mond (Feder und Hammer werden fallen gelassen durch David Scott, Apollo 15)

Der griechische Philosoph Aristoteles beschäftigte sich im 4. Jahrhundert vor Christus mit der Bewegung von Körpern. Nach seiner Meinung bewegten sich im Wasser schwere Körper nach unten, leichte wegen „ihrer Leichtigkeit“ nach oben ('schwer' meint hier: größeres spezifisches Gewicht als Wasser). Schwere Körper müssten daher schneller zu Boden fallen als weniger schwere.

Auch war Aristoteles der (falschen) Meinung, ein Körper bewege sich während des Falles mit gleichbleibender Geschwindigkeit. Diese Auffassungen wurden von den spätantiken Gelehrten, den arabischen und Gelehrten der Scholastik nicht ernsthaft in Zweifel gezogen.

Allerdings beschrieb schon um 55 v. Chr. der römische Dichter und Philosoph Lukrez in seinem Werk „De rerum natura“ („Über die Natur der Dinge“), dass fallende Objekte nur vom Wasser- oder Luftwiderstand gebremst werden, und daher leichte Körper langsamer, im Vakuum aber alle Körper gleich schnell fallen müssen:[1]

Wer nun etwa vermeint, die schwereren Körper, die senkrecht
Rascher im Leeren versinken, vermöchten von oben zu fallen
Auf die leichteren Körper und dadurch die Stöße bewirken,
Die zu erregen vermögen die schöpferisch tätigen Kräfte:
Der entfernt sich gar weit von dem richtigen Wege der Wahrheit.
Denn was immer im Wasser herabfällt oder im Luftreich,
Muß, je schwerer es ist, um so mehr sein Fallen beeilen,
Deshalb, weil die Natur des Gewässers und leichteren Luftreichs
Nicht in der nämlichen Weise den Fall zu verzögern imstand ist,
Sondern im Kampfe besiegt vor dem Schwereren schneller zurückweicht:
Dahingegen vermöchte das Leere sich niemals und nirgends
Wider irgendein Ding als Halt entgegenzustellen,
Sondern es weicht ihm beständig, wie seine Natur es erfordert.
Deshalb müssen die Körper mit gleicher Geschwindigkeit alle
Trotz ungleichem Gewicht durch das ruhende Leere sich stürzen (...)

Galileo Galilei erkannte 1590 die Gesetze des freien Falls: Alle Körper fallen im Vakuum unabhängig von ihrer Gestalt, Zusammensetzung und Masse gleich schnell. Ihre Fallgeschwindigkeit ist proportional zur Fallzeit, der Fallweg proportional zum Quadrat der Fallzeit. Die Beschleunigung ist dabei am selben Ort für alle Körper gleich groß. Galilei versuchte, durch Experimente die Schwerebeschleunigung festzustellen. Er hatte noch keinen genauen Zeitmesser und „verlangsamte“ deshalb die Bewegungen, indem er eine Kugel eine sogenannte Fallrinne hinab rollen ließ. Als Zeitmesser diente ein Eimer voll Wasser. Ein kleiner Wasserstrahl ergoss sich in einen Becher, und die Wassermenge während der Fallzeit wurde auf einer genauen Waage gewogen. Dass er den freien Fall auch dadurch untersuchte, dass er zwei Objekte vom Turm zu Pisa fallen ließ, ist eine Legende.

1659 - 59 Jahre nach Galileis Satz - bestätigte Robert Boyle experimentell, dass Körper unterschiedlicher Masse im Vakuum gleich schnell fallen.[2]

Isaac Newton (1642 - 1726) formulierte dann - in der 1687 veröffentlichten Philosophiae Naturalis Principia Mathematica - das Gravitationsgesetz, welches nicht nur den freien Fall auf der Erde erklärt, sondern auch die Umlaufbahnen von Mond und Planeten als Fallphänomene beschreibt. Newtons Theorie hat jedoch keine Erklärung für die Tatsache, dass alle Körper unabhängig von ihrer stofflichen und sonstigen Beschaffenheit völlig gleich fallen. Dies wurde erst im Rahmen der allgemeinen Relativitätstheorie verständlich.

Freier Fall im homogenen Feld[Bearbeiten]

Unter Vernachlässigung von Auftrieb, Luftreibung, Zunahme der Gravitationskraft bei Annäherung an die Erde und der Folgen der Erdrotation (Corioliskraft) fällt ein anfangs in Ruhe befindlicher Körper senkrecht mit der konstanten Beschleunigung g, deren Wert in Deutschland etwa 9,81 \;\text{m}/\text{s}^2 beträgt (siehe Normalschwereformel). Die Vorzeichen von g und der Geschwindigkeit v sind positiv für eine nach unten zeigende Koordinatenachse s. Wählt man die Nullpunkte geschickt (Start zur Zeit t = 0 bei s = 0), dann sind auch die Formeln einfach:

v(t) = gt
s(t) = \frac{1}{2}gt^2

Daraus ergeben sich die Fallzeit und die Endgeschwindigkeit für eine gegebene Fallhöhe h zu:

t(h) = \sqrt{\frac{2h}{g}}
v(h) = \sqrt{2gh}

Ein Sprung vom 5-m-Brett dauert demnach rund eine Sekunde und erreicht eine Geschwindigkeit von etwa 10 m/s gleich 36 km/h.

In einem Fallturm werden Fallzeiten bis etwa zehn Sekunden Dauer erreicht.

Siehe auch[Bearbeiten]

  • Wurfparabel
  • Auch beim Parabelflug eines Flugzeugs spricht man vom freien Fall. Hier wird der Luftwiderstand des Flugzeugs durch Triebwerksschub kompensiert. Solange das Flugzeug einer Wurfparabel folgt, herrscht annähernd Schwerelosigkeit.[3]

Weblinks[Bearbeiten]

 Commons: Free fall – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. Text auf Zeno.org
  2. Otto von Guericke hatte im Jahr 1649 die Kolbenvakuumluftpumpe erfunden; Boyle verbesserte sie bis 1659 zusammen mit Robert Hooke und nutzte sie dann für physikalische Experimente.
  3.  Rainer Müller: Klassische Mechanik. de Gruyter, 2009 (S. 126 in der Google-Buchsuche).