Xiao-Gang Wen

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Xiao-Gang Wen (2003)

Xiao-Gang Wen (* 26. November 1961 in Peking) ist ein US-amerikanischer Physiker, der sich mit theoretischer Festkörperphysik befasst. Er war Professor am Massachusetts Institute of Technology (MIT) und ist seit 2011 am Perimeter Institute.

Leben[Bearbeiten]

Wen studierte an der University of Science and Technology in Peking mit dem Bachelor Abschluss 1982 und an der Princeton University mit dem Master-Abschluss 1983 und der Promotion 1987. Er arbeitete dort mit Edward Witten über Superstringtheorie.[1] Als Post-Doktorand war er Mitglied des Institute of Theoretical Physics der University of California, Santa Barbara, wo er mit Robert Schrieffer, Frank Wilczek und Anthony Zee zusammenarbeitete und sich der Festkörperphysik zuwandte. Ab 1991 war er Assistant Professor, 1995 Associate Professor und seit 2000 Professor am MIT. Seit 2011 hat er den Isaac Newton Forschungs-Lehrstuhl am Perimeter Institute for Theoretical Physics.

Wen forschte insbesondere über topologische Ordnung in Systemen wie beim Quanten-Hall-Effekt. Das Konzept der topologischen Ordnung führte er 1989 zur Beschreibung von Quanten-Hall-Flüssigkeiten ein, die nicht durch die klassische Theorie der Phasenübergänge (mit gebrochenen Symmetrien und Ordnungsparametern) im Sinne von Lew Landau beschrieben werden können. 2001 führte er allgemein das Konzept der Quanten-Ordnung ein.[2]

Er benutzt Festkörpersysteme als Modelle (Spinmodelle auf Gittern) für vereinheitlichte Theorien in der Elementarteilchenphysik (String Net Physics).[3] Inspiration war die Beobachtung gebrochenzahliger Ladung (unter anderem mit Ladung ein Drittel ähnlich wie bei Quarks) im Fractional Quantum Hall Effect (FQHE). Wen sieht darin ein Beispiel neuer topologischer Phasen von Festkörpersystemen mit String-artiger Beschreibung durch Quasiteilchen.[4] Mit Levin fand er, dass die String-Flüssigkeiten sich durch die Maxwell-Gleichung beschreiben lassen und die Enden der Strings Modelle für Fermionen (Elektronen) abgeben (später konnten sie auch Eichbosonen und Quarks und Gravitonen damit modellieren), so dass sich damit ein Festkörpermodell der Elementarteilchenphysik ergab. Wen hofft in dem von seinem Kollegen Young Lee am MIT (um Unreinheiten im Kristallaufbau zu vermeiden) synthetisch hergestellten Herbertsmithtit ein experimentelles Modell für diese Theorien gefunden zu haben. In dem Mineral sind die Elektronen in einem zweidimensionalen Gitter in Dreiecken trigonal angeordnet. Die bevorzugte Spinrichtung benachbarter Elektronen ist antiparallel, das dritte Elektron muss sich aber zu einem der beiden anderen parallel ausrichten. Das System ist frustriert, was zu zufälligen Fluktuationen im Spin führt und zu einer Spin-Flüssigkeit.

Er verfolgt auch Anwendungen auf topologische Quantencomputer (ein Konzept das der Mathematiker Michael Freedman und Alexei Kitajew in den 1980er Jahren einführten).

Mit Patrick A. Lee entwickelte er eine SU (2) Theorie von Hochtemperatursupraleitern.[5][6]

1992 war er Sloan Fellow. 2006 war er als Moore Scholar am Caltech, 2002 bis 2004 war er Gastprofessor am Center for Advanced Study der Tsinghua-Universität und 2009 Gastprofessor am Perimeter Institute. Er ist Fellow der American Physical Society (2002).

Schriften[Bearbeiten]

  • Quantum Field Theory of Many Body Systems, Oxford University Press 2004
  • mit Michael Levin Photons and Electrons as emergent phenomena, Reviews of Modern Physics, Band 77, 2005, S. 871-879, Arxiv
  • mit Levin String net phases. A physical mechanism for topological phases,, Phys. Rev. B, Band 71, 2005, 045110, Arxiv
  • mit Zheng-Cheng Gu Emergency of helicity +/- 2 modes (gravitons) from qubit models, Nuclear Physics B, Band 863, 2009, S. 90-129 Arxiv
  • mit Levin Fermions, strings, and gauge fields in lattice spin models, Phys. Rev. B, Band 67, 2003, S. 245316, Arxiv
  • From new states of matter to a unification of light and electrons, Progr. Theor. Phys., Suppl., Band 160, 2006, S. 351-360, Arxiv
  • An Introduction to Quantum Order, String-net Condensation, and Emergence of Light and Fermions, Annals of Physics, Band 316, 2005, S. 1, Arxiv

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Wen, Witten Electric and magnetic charges in superstring models, Nuclear physics B, Band 261, 1985, S.44, 651
  2. Wen Quantum order: a quantum entanglement of many particles, Physics Letters A, 300, 175 (2002)
  3. Wen Theory of Everything (for some universes)
  4. Merali The universe is a string-net liquid, 2007 (ursprünglich New Scientist)
  5. Patrick A. Lee, Naoto Nagaosa, Xiao-Gang Wen Doping a Mott Insulator: Physics of High Temperature Superconductivity, Rev. Mod. Phys. 78 17-85 (2006)
  6. P. A. Lee, N. Nagaosa, T. K. Ng, X. G. Wen: An SU(2) Formulation of the t-J Model: Application to Underdoped Cuprates. In: Physical Review B. Band 57, 1998, S. 6003