Quadratwurzel aus 3

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 3. Mai 2023 um 15:51 Uhr durch Georg Hügler (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Wurzel 3 als Länge der Diagonale eines Würfels
Wurzel 3 als Länge der Diagonale eines Würfels
Wurzel 3 als Länge der Höhe eines gleichseitigen Dreiecks
Wurzel 3 als Länge der Höhe eines gleichseitigen Dreiecks
Wurzel 3 im Koordinatensystem

Die Quadratwurzel aus 3 oder Quadratwurzel von 3 (geschrieben ) ist die positive, reelle Zahl, die mit sich selbst multipliziert 3 ergibt. Die Wurzel von 3 ist eine irrationale Zahl. Sie ist eine mathematische Konstante, auch bekannt unter dem Namen Theodorus-Konstante, benannt nach Theodoros von Kyrene.

Näherungsweise gilt:

Ihre Kettenbruchentwicklung ist [1;1,2,1,2,1,2,1,2,1,2,…].

Es ist auch und

Beweis der Irrationalität

Angenommen, wäre rational. Dann könnte man die Zahl als Bruch zweier teilerfremder ganzer Zahlen und schreiben:

.

Durch Quadrieren der Gleichung erhält man

daraus folgt

Aber dann ist für eine ganze Zahl

weil eine ganze Zahl ist und damit eine ganze Zahl sein muss und damit auch 3 als Teiler von existieren muss.

Daraus folgt wieder

,

also

Aber dann ist auch für eine ganze Zahl

,

was einen Widerspruch bedeutet, weil und teilerfremd sind.

Nachkommastellen

Die ersten 100 Nachkommastellen:

1,7320508075 6887729352 7446341505 8723669428 0525381038 0628055806 9794519330 1690880003 7081146186 7572485756[1]

Weitere Dezimalstellen finden sich auch unter Folge A002194 in OEIS.

Der derzeitige Weltrekord der Berechnung der Nachkommastellen (vom 9. Juni 2019) liegt bei 2.000.000.000.000 und wurde von Hiroyuki Oodaira (大平 寛之) erzielt.[2]

Anwendung

Das Verhältnis der Seitenlängen a und r dieses Rechtecks im Kreis ist
  • Das Verhältnis zwischen der Diagonale eines dreidimensionalen Würfels und der Kantenlänge beträgt
  • Die Distanz zwischen zwei gegenüberliegenden Seiten eines regulären Sechsecks mit der Seitenlänge a beträgt , oder anders gesagt, das Doppelte des Inkreisradius
  • Der Verkettungsfaktor, das Verhältnis von Phasenspannung (230 V) zu Außenleiterspannung (400 V), beträgt bei Dreiphasenwechselstrom
  • Die Höhe eines gleichseitigen Dreiecks mit der Seitenlänge a beträgt , sein Flächeninhalt

Einzelnachweise

  1. The square root of 3 to 100,000 places (Memento vom 29. September 2007 im Internet Archive) von Owen O’Malley (englisch)
  2. Records set by y-cruncher. Abgerufen am 12. August 2019.