Satz von Chow

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 3. Februar 2024 um 13:47 Uhr durch Samuel Adrian Antz (Diskussion | Beiträge) (Komplexer projektiver Raum verlinkt.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

In der Mathematik ist der Satz von Chow ein Beispiel für den Zusammenhang zwischen analytischer Geometrie und algebraischer Geometrie.

Der Satz besagt, dass ein abgeschlossener analytischer Unterraum des komplexen projektiven Raumes eine Untervarietät des sein muss. Ein analytischer Unterraum, der in der Standardtopologie abgeschlossen ist, ist also auch in der Zariski-Topologie abgeschlossen.

Der Satz ermöglicht es, Methoden der klassischen algebraischen Geometrie zum Studium beliebiger analytischer Unterräume zu verwenden.

Der Satz wurde 1949 von Chow bewiesen, der Beweis 1953 von Remmert und Stein vereinfacht, bevor ihn Serre 1956 als Folgerung seines GAGA-Prinzips (Géométrie Algébrique et Géométrie Analytique) erhielt.

Einige Anwendungen:

  • Chow, W.-L.: On Compact Complex Analytic Varieties, American Journal of Mathematics, Vol. 71, No. 4, S. 893–914
  • Gunning, R. C. und H. Rossi: Analytic functions of several complex variables, AMS Chelsea, Providence
  • Serre, J.-P.: Géométrie algébrique et géométrie analytique, Annales de l’institut Fourier, Vol. 6, S. 1–42