Dreiecksungleichung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Dreiecksungleichung ist in der Geometrie ein Satz, der besagt, dass eine Dreiecksseite höchstens so lang wie die Summe der beiden anderen Seiten ist. Das „höchstens“ schließt dabei den Sonderfall der Gleichheit ein. Die Dreiecksungleichung spielt auch in anderen Teilgebieten der Mathematik wie der Linearen Algebra oder der Funktionalanalysis eine wichtige Rolle.

Formen der Dreiecksungleichung[Bearbeiten | Quelltext bearbeiten]

Dreiecksungleichung für Dreiecke[Bearbeiten | Quelltext bearbeiten]

Dreieck

Nach der Dreiecksungleichung ist im Dreieck die Summe der Längen zweier Seiten a und b stets mindestens so groß wie die Länge der dritten Seite c. Das heißt formal:

Man kann auch sagen, der Abstand von A nach B ist stets höchstens so groß wie der Abstand von A nach C und von C nach B zusammen, oder um es populär auszudrücken: „Der direkte Weg ist immer der kürzeste.“

Das Gleichheitszeichen gilt dabei nur, wenn a und b Teilstrecken von c sind – man spricht dann auch davon, dass das Dreieck „entartet“ ist.

Da aus Symmetriegründen auch gilt, folgt , analog erhält man , insgesamt also

.

Die linke Ungleichung wird gelegentlich auch als umgekehrte Dreiecksungleichung bezeichnet.

Die Dreiecksungleichung charakterisiert Abstands- und Betragsfunktionen. Sie wird daher als ein Axiom der abstrakten Abstandsfunktion in metrischen Räumen verwendet.

Dreiecksungleichung für reelle Zahlen[Bearbeiten | Quelltext bearbeiten]

Für reelle Zahlen gilt:

Beweis

Weil beide Seiten der Ungleichung nicht negativ sind, ist Quadrieren eine Äquivalenzumformung:
Durch Streichen identischer Terme gelangen wir zur äquivalenten Ungleichung
Diese Ungleichung gilt, weil für beliebige

Umgekehrte Dreiecksungleichung[Bearbeiten | Quelltext bearbeiten]

Wie beim Dreieck lässt sich auch eine umgekehrte Dreiecksungleichung herleiten:

Es gilt Einsetzen von gibt

setzt man stattdessen so ergibt sich

zusammen also (denn für beliebige reelle Zahlen und mit und gilt auch )

Ersetzt man durch so erhält man auch

Insgesamt also

für alle

Dreiecksungleichung für komplexe Zahlen[Bearbeiten | Quelltext bearbeiten]

Für komplexe Zahlen gilt:

Beweis

Da alle Seiten nichtnegativ sind, ist Quadrieren eine Äquivalenzumformung und man erhält
wobei der Überstrich komplexe Konjugation bedeutet. Streicht man identische Terme und setzt so bleibt
zu zeigen. Mit erhält man
bzw.
was wegen und der Monotonie der (reellen) Wurzelfunktion immer erfüllt ist.

Analog wie im reellen Fall folgt aus dieser Ungleichung auch

für alle

Dreiecksungleichung von Betragsfunktionen für Körper[Bearbeiten | Quelltext bearbeiten]

Zusammen mit anderen Forderungen wird eine Betragsfunktion für einen Körper auch durch die

Dreiecksungleichung

etabliert. Sie hat zu gelten für alle Sind alle Forderungen (s. Artikel Betragsfunktion) erfüllt, dann ist eine Betragsfunktion für den Körper

Ist für alle ganzen , dann nennt man den Betrag nichtarchimedisch, andernfalls archimedisch.

Bei nichtarchimedischen Beträgen gilt die

verschärfte Dreiecksungleichung

Sie macht den Betrag zu einem ultrametrischen. Umgekehrt ist jeder ultrametrische Betrag nichtarchimedisch.

Dreiecksungleichung für Summen und Integrale[Bearbeiten | Quelltext bearbeiten]

Mehrmalige Anwendung der Dreiecksungleichung bzw. vollständige Induktion ergibt

für reelle oder komplexe Zahlen . Diese Ungleichung gilt auch, wenn Integrale anstelle von Summen betrachtet werden:

Ist , wobei ein Intervall ist, Riemann-integrierbar, dann gilt

.[1]

Dies gilt auch für komplexwertige Funktionen , vgl.[2]. Dann existiert nämlich eine komplexe Zahl so, dass

und .

Da

reell ist, muss gleich Null sein. Außerdem gilt

,

insgesamt also

.

Dreiecksungleichung für Vektoren[Bearbeiten | Quelltext bearbeiten]

Für Vektoren gilt:

.

Die Gültigkeit dieser Beziehung sieht man durch Quadrieren

,

unter Anwendung der Cauchy-Schwarzschen Ungleichung:

.

Auch hier folgt wie im reellen Fall

sowie

Dreiecksungleichung für sphärische Dreiecke[Bearbeiten | Quelltext bearbeiten]

Zwei sphärische Dreiecke

In sphärischen Dreiecken gilt die Dreiecksungleichung im Allgemeinen nicht.

Sie gilt jedoch, wenn man sich auf eulersche Dreiecke beschränkt, also solche, in denen jede Seite kürzer als ein halber Großkreis ist.

In nebenstehender Abbildung gilt zwar

jedoch ist .

Dreiecksungleichung für normierte Räume[Bearbeiten | Quelltext bearbeiten]

In einem normierten Raum wird die Dreiecksungleichung in der Form

als eine der Eigenschaften gefordert, die die Norm für alle erfüllen muss. Insbesondere folgt auch hier

sowie

für alle .

Im Spezialfall der Lp-Räume wird die Dreiecksungleichung Minkowski-Ungleichung genannt und mittels der Hölderschen Ungleichung bewiesen.

Dreiecksungleichung für metrische Räume[Bearbeiten | Quelltext bearbeiten]

In einem metrischen Raum wird als Axiom für die abstrakte Abstandsfunktion verlangt, dass die Dreiecksungleichung in der Form

für alle erfüllt ist. In jedem metrischen Raum gilt also per Definition die Dreiecksungleichung. Daraus lässt sich ableiten, dass in einem metrischen Raum auch die umgekehrte Dreiecksungleichung

für alle gilt. Außerdem gilt für beliebige die Ungleichung

.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Harro Heuser: Lehrbuch der Analysis, Teil 1. 8. Auflage. B. G. Teubner, Stuttgart 1990, ISBN 3-519-12231-6. Satz 85.1
  2. Walter Rudin: Real and Complex Analysis. MacGraw-Hill 1986, ISBN 0-07-100276-6. Theorem 1.33

Siehe auch[Bearbeiten | Quelltext bearbeiten]