Duffin-Schaeffer-Vermutung
Die Duffin–Schaeffer-Vermutung ist ein 2019 von Dimitris Koukoulopoulos und James Maynard bewiesener und ursprünglich 1941 R. J. Duffin und A. C. Schaeffer vermuteter Lehrsatz der analytischen Zahlentheorie.
Aussage
[Bearbeiten | Quelltext bearbeiten]Sei eine beliebige Funktion, die positive Werte annimmt. Dann gibt es genau dann für Lebesgue-fast alle unendlich viele rationale Zahlen mit teilerfremden mit
- ,
wenn
mit der Eulerschen Phi-Funktion gilt.
Die Hinrichtung folgt aus dem Borel-Cantelli-Lemma. Koukoulopoulos und Maynard bewiesen 2019 die Rückrichtung.
Beispiele
[Bearbeiten | Quelltext bearbeiten]Für folgt aus dem Approximationssatz von Dirichlet, dass alle irrationale Zahlen die gewünschte Eigenschaft haben. Der Satz von Chintschin gibt die Aussage der Duffin-Schaeffer-Vermutung für den Fall, dass eine monoton fallende Folge und ist.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Duffin-Schaeffer: Khintchine's problem in metric diophantine approximation, Duke Math. J. 8, 243–255 (1941)
- Koukoulopoulos-Maynard: On the Duffin-Shaeffer conjecture, Ann. Math. 192, 251–307 (2020)
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Duffin-Schaeffer conjecture (Encyclopedia of Mathematics)