Identifizierbarkeit

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Racine carrée bleue.svg
Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen.

Bitte hilf mit, die Mängel dieses Artikels zu beseitigen, und beteilige dich bitte an der Diskussion! (Artikel eintragen)

Als Identifizierbarkeit (häufig engl. Identifiability) bezeichnet man in der Statistik die Eigenschaft von Schätzmodellen, dass Inferenzstatistik auf sie anwendbar ist.

Ein Modell ist dann identifizierbar, wenn es theoretisch möglich ist, die dem Modell zugrundeliegenden wahren Werte zu ermitteln, indem unendlich viele Beobachtungen gemacht wurden (gezogen wurden). Mathematisch bedeutet das, dass unterschiedliche Werte der Parameter des Modells unterschiedliche Wahrscheinlichkeitsfunktionen der beobachtbaren Variablen erzeugen.

In der Praxis, wo endlich viele Beobachtungen vorliegen ist die Identifizierbarkeit eines Modells durch die Anzahl der zu schätzenden Parameter, der Anzahl der Beobachtungen und den damit verbundenen Freiheitsgraden beschränkt.

Literatur[Bearbeiten | Quelltext bearbeiten]