Koeffizientenvergleich

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Koeffizientenvergleich ist ein Verfahren aus der linearen Algebra, bei dem die Koeffizienten von zwei Linearkombinationen einer linear unabhängigen Teilmenge eines Vektorraums verglichen werden. Häufig verwendet wird ein Polynomraum als Vektorraum mit den Monomen (mit Koeffizient 1) als linear unabhängiger Teilmenge, zum Beispiel bei der Partialbruchzerlegung. Man verwendet dabei die Tatsache, dass zwei Linearkombinationen derselben linear unabhängigen Teilmenge genau dann gleich sind, wenn die entsprechenden Koeffizienten gleich sind.

Polynome[Bearbeiten | Quelltext bearbeiten]

Zwei Polynome

und

sind gleich, wenn ihre Koeffizienten übereinstimmen:

Beispiel[Bearbeiten | Quelltext bearbeiten]

Es sind die beiden Polynome und gegeben. Für welche Werte von und sind die beiden Polynome gleich?

Verglichen werden:

  1. (Vergleich der Koeffizienten von )
  2. (Vergleich der Koeffizienten von )

Lösung: und

Trigonometrische Polynome[Bearbeiten | Quelltext bearbeiten]


Verglichen werden:

  1. (Vergleich der Koeffizienten von )
  2. (Vergleich der Koeffizienten von )

Lösung: ;