Maßerweiterungssatz von Carathéodory

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Maßerweiterungssatz von Carathéodory ist ein Satz aus dem mathematischen Teilgebiet der Maßtheorie. Dieser Satz dient dazu, Prämaße, die auf Mengenringen definiert sind, auf Maße auf σ-Algebren auszudehnen. Mit dieser auf Constantin Carathéodory zurückgehenden Methode kann insbesondere das Lebesguemaß auf die Längenbestimmung von Intervallen zurückgeführt werden.

Formulierung des Satzes[Bearbeiten | Quelltext bearbeiten]

Es sei ein Prämaß auf einem Mengenring von Mengen aus einer Grundmenge . Dann gibt es eine umfassende σ-Algebra auf und eine Erweiterung von zu einem Maß auf , so dass ein vollständiger Maßraum ist.

Konstruktion[Bearbeiten | Quelltext bearbeiten]

Man definiert mittels des auf dem Ring gegebenen Prämaßes ein auf der gesamten Potenzmenge definiertes äußeres Maß und daraus mittels einer geeigneten Einschränkung ein Maß auf einer σ-Algebra. Diese Konstruktion wird nun im Einzelnen beschrieben und parallel auf die Konstruktion des Lebesguemaßes angewandt.

Maße auf Ringen[Bearbeiten | Quelltext bearbeiten]

Ein Mengenring enthält die leere Menge und ist bezüglich endlicher Vereinigungen und Bildung von Differenzmengen abgeschlossen. Ein Prämaß auf einem solchen Mengenring ist eine Funktion mit und , falls paarweise disjunkte Mengen aus sind, deren Vereinigung wieder in liegt.[1] Das Standardbeispiel ist die Menge aller endlichen Vereinigungen halboffener Intervalle in , wobei stets sei. Derartige Vereinigungen können immer auch als disjunkte Vereinigung solcher Intervalle geschrieben werden, und die Festsetzung , wobei die Länge eines solchen Intervalls sei, definiert ein Prämaß auf , das sogenannte Lebesguesche Prämaß.

Dies verallgemeinert sich leicht auf Dimensionen, wenn man auf den Mengenring aller endlichen Vereinigungen n-dimensionaler Intervalle (Quader) betrachtet, wobei stets sei. Auch hier kann man sich auf disjunkte Vereinigungen beschränken und in einem solchen Fall

definieren, wobei das übliche elementargeometrische Volumen eines Quaders sei. Man nennt auch dieses Beispiel das n-dimensionale lebesguesche Prämaß.[2]

Konstruktion des äußeren Maßes[Bearbeiten | Quelltext bearbeiten]

Es sei ein Inhalt auf einem Mengenring von Mengen aus einer Grundmenge gegeben. Für jede Teilmenge sei

wobei . Dann ist ein äußeres Maß auf . Man kann zeigen, dass

für alle und . Die erste Eigenschaft besagt, dass das vorgegebene Maß fortsetzt, die zweite, dass jede Menge des Grundraums durch jede Menge des vorgegebenen Ringes in zwei Teile zerlegt wird, die sich bzgl. additiv verhalten.[3]

Übergang zu messbaren Mengen[Bearbeiten | Quelltext bearbeiten]

Der Kern in Carathéodorys Konstruktion ist die Definition von

,

der Nachweis, dass dies eine σ-Algebra definiert, die sogenannte σ-Algebra der Carathéodory-messbaren Mengen, und dass die Einschränkung ein Maß ist. Wegen obiger zweiter Eigenschaft des äußeren Maßes ist und wegen der ersten ist eine Fortsetzung von .[4] Schließlich zeigt man, dass jede Menge mit äußerem Maß 0 enthält, woraus sich dann die Vollständigkeit des Maßraums ergibt.

Wendet man diese Konstruktion auf unser Beispiel des lebesgueschen Prämaßes an, so erhält man das Lebesguemaß auf der lebesgueschen σ-Algebra. In diesem Fall kann man zeigen, dass die lebesguesche σ-Algebra echt größer ist als die von erzeugte σ-Algebra, die mit der borelschen σ-Algebra zusammenfällt.[5] Allerdings ist der Unterschied nicht zu groß, denn jede Menge der lebesgueschen σ-Algebra unterscheidet sich nur um eine -Nullmenge von einer Borelmenge, das heißt die lebesguesche σ-Algebra ist die Vervollständigung der borelschen.[6]

Bemerkungen[Bearbeiten | Quelltext bearbeiten]

Eindeutigkeit[Bearbeiten | Quelltext bearbeiten]

Als Folgerung aus obigem Satz erhält man, dass sich jedes Maß auf einem Ring zu einem Maß auf der vom Ring erzeugten σ-Algebra fortsetzen lässt. Man erhält hier aus dem Eindeutigkeitssatz eine Eindeutigkeitsaussage, wenn man zusätzlich voraussetzt, dass als abzählbare Vereinigung von Ringmengen endlichen Prämaßes geschrieben werden kann, das Prämaß also -endlich ist.

Größe der Fortsetzung[Bearbeiten | Quelltext bearbeiten]

Es lässt sich zeigen, dass wenn das zur Konstruktion verwendete äußere Maß ein metrisches äußeres Maß ist, dass dann die σ-Algebra der messbaren Mengen die Borelsche σ-Algebra enthält. Dies ist eine weitere Erklärung dafür, dass lebesguesche σ-Algebra echt größer ist als die borelsche σ-Algebra.

Halbringe[Bearbeiten | Quelltext bearbeiten]

Statt von Mengenringen kann man auch vom allgemeineren Begriff des Halbrings ausgehen. Ein Maß bzw. Prämaß auf einem Halbring wird wie auf Ringen definiert, das heißt, es handelt sich um eine Mengenfunktion , so dass und , falls paarweise disjunkte Mengen aus sind, deren Vereinigung wieder in liegt.[7]

Um in dieser Situation zu einer Maßerweiterung zu kommen, bildet man zunächst den von erzeugten Ring , der gleich der Menge aller endlichen, disjunkten Vereinigungen von Mengen aus ist.[8] Ist eine solche disjunkte Vereinigung, so wird durch die Festsetzung ein Maß auf dem Mengenring erklärt.[9] Darauf kann dann die oben beschriebene Konstruktion angewendet werden.

Das Standardbeispiel ist der Halbring aller halboffenen n-dimensionalen Intervalle (Quader)

mit und das darauf erklärte Maß des elementargeometrischen Inhalts. Die hier vorgestellte Konstruktion führt also direkt von der Definition des Quadervolumens als Produkt der Seitenlängen zum Lebesguemaß. Sie kann direkt auf allgemeine Produktmaße verallgemeinert werden.

Verallgemeinerungen[Bearbeiten | Quelltext bearbeiten]

Allgemeiner lässt sich zeigen, dass wenn ein Halbring ist und eine additive, -subadditive und -endliche Mengenfunktion, dann existiert eine eindeutige Fortsetzung von auf , die ein Maß ist und auf jeder Menge des Halbrings mit der Mengenfunktion übereinstimmt. Diese Formulierung enthält die obige als Spezialfall.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Ernst Henze: Einführung in die Maßtheorie (BI-Hochschultaschenbücher. Bd. 505). Bibliographisches Institut, Mannheim u. a. 1971, ISBN 3-411-00505-X, Kap. 2.
  2. Heinz Bauer: Wahrscheinlichkeitstheorie. 4., völlig überarbeitete und neugestaltete Auflage. de Gruyter, Berlin 1991, ISBN 3-11-012191-3, Kap. I, § 4.
  3. Heinz Bauer: Wahrscheinlichkeitstheorie. 4., völlig überarbeitete und neugestaltete Auflage. de Gruyter, Berlin 1991, ISBN 3-11-012191-3, Kap. I, Satz 5.2.
  4. Heinz Bauer: Wahrscheinlichkeitstheorie. 4., völlig überarbeitete und neugestaltete Auflage. de Gruyter, Berlin 1991, ISBN 3-11-012191-3, Kap. I, Satz 5.4.
  5. Donald L. Cohn: Measure Theory. Birkhäuser, Boston MA u. a. 1980, ISBN 3-7643-3003-1, Satz 2.1.9.
  6. Donald L. Cohn: Measure Theory. Birkhäuser, Boston MA u. a. 1980, ISBN 3-7643-3003-1, Satz 1.5.2
  7. Ernst Henze: Einführung in die Maßtheorie (BI-Hochschultaschenbücher. Bd. 505). Bibliographisches Institut, Mannheim u. a. 1971, ISBN 3-411-00505-X, Kap. 2.
  8. Ernst Henze: Einführung in die Maßtheorie (BI-Hochschultaschenbücher. Bd. 505). Bibliographisches Institut, Mannheim u. a. 1971, ISBN 3-411-00505-X, Kap. 1.5, Satz 6.
  9. Ernst Henze: Einführung in die Maßtheorie (BI-Hochschultaschenbücher. Bd. 505). Bibliographisches Institut, Mannheim u. a. 1971, ISBN 3-411-00505-X, Kap. 2.3, Satz 2.