Minkowski-Funktional

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Im mathematischen Teilgebiet der Funktionalanalysis ist das Minkowski-Funktional (nach Hermann Minkowski), oft auch Eichfunktional genannt, eine Verallgemeinerung des Normbegriffes.

Definition[Bearbeiten | Quelltext bearbeiten]

Es sei ein topologischer Vektorraum. Ist nun eine absorbierende Teilmenge, so heißt die Funktion

das Minkowski-Funktional oder Eichfunktional zu .[1]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Ist die absorbierende Menge balanciert und konvex, so ist eine Halbnorm oder auch Seminorm. Umgekehrt hat für jede Seminorm die Menge die genannten Eigenschaften. Daraus folgt, dass die lokalkonvexen Räume genau die Räume sind, deren Topologie durch eine Familie von Seminormen definiert werden kann. Ein lokalkonvexer Raum ist genau dann hausdorffsch, wenn diese Familie von Seminormen separierend ist.

Beispiel[Bearbeiten | Quelltext bearbeiten]

In einem euklidischen Raum (etwa dem dreidimensionalen Raum der alltäglichen Anschauung) betrachte man als Teilmenge die Einheitskugel. Dann ist das Minkowski-Funktional identisch mit der üblichen euklidischen Norm, denn mit liegt gerade auf dem Rand der Menge , also der Kugel mit Radius und Mittelpunkt 0.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992 ISBN 3-528-07262-8, Kapitel I, §6, Definition auf Seite 42