Halbnorm

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Funktion ist eine Halbnorm im Raum

Eine Halbnorm oder Seminorm ist in der Mathematik eine Funktion, die absolut homogen und subadditiv ist. Sie verallgemeinert das Konzept der Norm, indem auf die Eigenschaft der positiven Definitheit verzichtet wird. Jede Halbnorm ist nichtnegativ, symmetrisch bezüglich Vorzeichenumkehr, sublinear und konvex. Aus jeder Halbnorm kann durch Restklassenbildung eine zugehörige Norm abgeleitet werden. Mit Hilfe von Familien von Halbnormen können auch lokalkonvexe Vektorräume definiert werden. Halbnormen werden insbesondere in der linearen Algebra und in der Funktionalanalysis studiert.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei ein Vektorraum über dem Körper . Eine Halbnorm auf ist eine Abbildung mit den Eigenschaften absolute Homogenität und Subadditivität,[1] das heißt für alle und für alle gelten

  (absolute Homogenität)

und

  (Subadditivität),

wobei den Betrag des Skalars darstellt. Ein Vektorraum zusammen mit einer Halbnorm heißt halbnormierter Raum .

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Jede Norm ist eine Halbnorm, die zudem auch positiv definit ist.
  • Die Nullfunktion , die jedes Element des Vektorraums auf Null abbildet, ist eine Halbnorm.
  • Der Betrag einer reell- oder komplexwertigen linearen Funktion ist eine Halbnorm.
  • Jede positiv semidefinite symmetrische Bilinearform im komplexen Fall hermitesche Sesquilinearform induziert durch eine Halbnorm.
  • Ist ein topologischer Raum und kompakt, so ist durch eine Halbnorm auf dem Raum aller stetigen Funktionen gegeben. Hier wird verwendet, dass stetige Funktionen auf kompakten Mengen beschränkt sind und daher das Supremum endlich bleibt.
  • Das Minkowski-Funktional zu einer absorbierenden, absolutkonvexen Teilmenge eines Vektorraumes.
  • Auf dem Dualraum eines normierten Raumes definiert für und eine Halbnorm.
  • Auf der Menge der beschränkten lineare Operatoren lassen sich durch () sowie durch () Halbnormen definieren.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Durch Setzen von in der Definition folgt sofort

,

die Halbnorm des Nullvektors ist damit null. Im Gegensatz zu Normen kann es aber auch Vektoren geben, deren Halbnorm ist. Durch Setzen von folgt dann aus der Subadditivität (auch Dreiecksungleichung genannt) und der absoluten Homogenität die Nichtnegativität

für alle . Durch Setzen von sieht man weiter, dass eine Halbnorm symmetrisch bezüglich Vorzeichenumkehr ist, das heißt

und aus der Anwendung der Dreiecksungleichung auf folgt daraus dann die umgekehrte Dreiecksungleichung

.

Weiter ist eine Halbnorm sublinear, da absolute Homogenität positive Homogenität impliziert, und auch konvex, denn es gilt für reelles

.

Umgekehrt ist jede absolut homogene und konvexe Funktion subadditiv und damit eine Halbnorm, was durch Setzen von und Multiplikation mit ersichtlich ist.

Restklassenbildung[Bearbeiten | Quelltext bearbeiten]

Aufgrund der absoluten Homogenität und der Subadditivität ist die Menge

der Vektoren mit Halbnorm null ein Untervektorraum von . Daher kann eine Äquivalenzrelation auf durch

definiert werden. Der Vektorraum aller Äquivalenzklassen aus obiger Äquivalenzrelation ist zusammen mit der Halbnorm ein normierter Raum. Man nennt diesen Vorgang Restklassenbildung in bezüglich der Halbnorm und bezeichnet als Faktorraum . Diese Konstruktion kommt beispielsweise bei der Definition der Lp-Räume zum Einsatz.

Familie von Halbnormen[Bearbeiten | Quelltext bearbeiten]

In der Funktionalanalysis im Bereich der lokalkonvexen Vektorräume werden meistens Familien von Halbnormen betrachtet. Mit diesen kann es möglich sein, auf dem ursprünglichen Vektorraum eine Topologie zu definieren, die ihn zu einem topologischen Vektorraum macht. Dazu legt man fest, dass die Menge offen ist, falls für ein und endlich viele Indizes existieren, sodass

für alle gilt.

In diesem Zusammenhang sind Familien mit einer bestimmten Trennungseigenschaft von besonderem Interesse. Eine Familie von Halbnormen heißt trennend, falls es für jedes mindestens eine Halbnorm gibt, so dass gilt. Ein Vektorraum ist nämlich genau dann bezüglich der oben erklärten Topologie hausdorffsch, wenn die Familie von Halbnormen trennend ist. Solch ein topologischer Vektorraum wird lokalkonvexer Vektorraum genannt.[2]

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Walter Rudin: Functional Analysis. McGraw-Hill, New York 1991, S. 24–25.
  2. Walter Rudin: Functional Analysis. McGraw-Hill, New York 1991, S. 26–27.

Weblinks[Bearbeiten | Quelltext bearbeiten]