Oxazoline

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Oxazoline (Dihydrooxazole) sind heterocyclische Verbindungen, deren Fünfring je ein Sauerstoffatom und ein Stickstoffatom sowie eine Doppelbindung im Ring enthält. Die Heteroatome Sauerstoff und Stickstoff stehen zueinander in 1,3-Stellung, wobei dem Sauerstoffatom die Position 1 und dem Stickstoffatom die Position 3 zugewiesen wird. Je nach Lage der Doppelbindung im heterocyclischen Ring gibt es mehrere zueinander isomere Oxazoline:

Isomere 2-Oxazoline, 3-Oxazoline und 4-Oxazoline (von links nach rechts)

Synthese[Bearbeiten | Quelltext bearbeiten]

2-Oxazoline entstehen bei der Dehydratisierung von N-(2-Hydroxyalkyl)amiden durch innermolekulare Cyclisierung.[1] Man kann 2-Oxazoline auch aus β-Halogenalkylamiden durch Erhitzen mit wässrigen oder alkoholischen Alkalien darstellen. Sie lassen sich auch durch die Kondensationsreaktion von 1,2-Aminoalkoholen mit Carbonsäureestern, Carbonsäureamiden oder Nitrilen gewinnen. Die gezielte Synthese der 3-Oxazoline erfolgt analog einer Variante der Asinger-Reaktion aus 2-Halogenaldehyden, Ammoniak, Natronlauge und einer Oxokomponente (meist ein Keton).[2] Bei einigen Synthesen fallen 3-Oxazoline als Nebenprodukte an.[3]

Das erste Oxazolin wurde 1884 synthetisiert.[4]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Unsubstituierte Oxazoline
Name 2-Oxazolin 3-Oxazolin 4-Oxazolin
Andere Namen 4,5-Dihydrooxazol 2,5-Dihydrooxazol 2,3-Dihydrooxazol
Strukturformel 2-Oxazoline.png 3-Oxazoline.png Oxazoline4.png
CAS-Nummer 504-77-8 95879-85-9 6569-13-7
PubChem 21865211
Summenformel C3H5NO
Molare Masse 71,08 g·mol−1
Aggregatzustand flüssig[5]
Kurzbeschreibung farblose Flüssigkeit[5]
Siedepunkt 98 °C[5]
Dichte 1,075 g·cm−3[5]
  • 2-Oxazoline enthalten eine C=N-Doppelbindung zwischen dem Kohlenstoffatom 2 und dem Stickstoffatom
  • 3-Oxazoline enthalten eine C=N-Doppelbindung zwischen dem Kohlenstoffatom 3 und dem Stickstoffatom
  • 4-Oxazoline enthalten eine C=C-Doppelbindung zwischen den Kohlenstoffatomen 4 und 5.

Am weitaus wichtigsten sind die 2-Oxazoline. Es sind meist farblose, pyridinähnlich riechende Flüssigkeiten von schwach basischem Charakter, deren niedere Glieder sich in Wasser lösen.

Reaktivität[Bearbeiten | Quelltext bearbeiten]

2-Oxazoline ähneln den Imidoestern (Synonym: Imidsäureester)[6] und können mit starken Reduktionsmitteln, z. B. mit Natrium und Alkohol, unter Ringspaltung zu N-substituierten Aminoalkoholen aufgespalten werden.[7] Mit p-Toluolsulfonsäuremethylester als Initiator lassen sich 2-alkyl-substituierte 2-Oxazoline polymerisieren. Nach Verseifung entsteht daraus ein lineares Polyethylenimin.[8] 3-Oxazoline reagieren wie Imine (Schiffsche Basen).[2] 4-Oxazoline zählen zugleich zur Verbindungsklasse der Enamine.

2-Oxazolin-5-one reagieren mit Carbonylverbindungen unter Wasserabspaltung zu Azlactonen.

Durch Metallierung des 2-Alkylsubstituenten bei 2-Oxazolinen lässt sich eine große Zahl chiraler und achiraler Carbonsäure-Derivate aus den um ein Kohlenstoffatom ärmeren Säuren herstellen. Andere Umsetzungen führen zu Aldehyden, Ketonen, Lactonen, Aminosäuren, Thiiranen und Olefinen. Wegen der Beständigkeit des Oxazolinsystems gegen viele Reagentien (RMgX, LiAlH4, CrO3, schwache Säuren und Basen) kann es als Schutzgruppe für Carbonsäuren bei Reaktionen dienen, an denen diese Stoffe beteiligt sind.[9]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Siegfried Hauptmann: Organische Chemie,VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 2. Auflage (1985), ISBN 3-342-00280-8, S. 577.
  2. a b Maya Weber, Jürgen Jakob und Jürgen Martens: Synthese und Reaktivität von 3-Oxazolinen, Liebigs Annalen der Chemie 1992, 1–6.
  3. Julien Capra, Thierry Le Gall: Oxidative Conversion of Imines into Azadienes, Synlett 2010, 441–444.
  4. David C. Palmer: The Chemistry of Heterocyclic Compounds, Oxazoles Synthesis, Reactions, and Spectroscopy. John Wiley & Sons, 2004, ISBN 0-471-64930-9, S. 332 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. a b c d Henry Wenker: Syntheses from Ethanolamine. V. Synthesis of Δ2-Oxazoline and of 2,2'-Δ2-Dioxazoline. In: Journal of the American Chemical Society. 60, 1938, S. 2152, doi:10.1021/ja01276a036.
  6. Siegfried Hauptmann: Organische Chemie,VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 2. Auflage (1985), S. 427, ISBN 3-342-00280-8.
  7. Brockhaus ABC Chemie, VEB F. A. Brockhaus Verlag, Leipzig, 1965, S. 1003.
  8. Blandine Brissaul, et al.: Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection, In: Bioconjugate Chem. 2003 14, 581–587.
  9. A. I. Meyers, E. D. Mihelich: Die Nützlichkeit der 2-Oxazoline in der Synthese. In: Angewandte Chemie. 88, 1976, S. 321, doi:10.1002/ange.19760881004.