Plutonium(III)-fluorid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Kristallstruktur
Kristallstruktur von Plutonium(III)-fluorid
__ Pu3+     __ F
Kristallsystem

trigonal

Raumgruppe

P3c1 (Nr. 165)

Gitterkonstanten

a = 709,3 pm
c = 725,4 pm[1]

Koordinationszahlen

Pu[9], F[3]

Allgemeines
Name Plutonium(III)-fluorid
Andere Namen

Plutoniumtrifluorid

Verhältnisformel PuF3
CAS-Nummer 13842-83-6
PubChem 139624
Kurzbeschreibung

violette Kristalle[1]

Eigenschaften
Molare Masse 301,06 g·mol−1
Aggregatzustand

fest

Dichte

9,33 g·cm−3[2]

Schmelzpunkt

1396 °C[1]

Siedepunkt

1957 °C[1]

Löslichkeit

nahezu unlöslich in Wasser[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Radioaktivität
Radioaktiv
 
Radioaktiv
Thermodynamische Eigenschaften
ΔHf0

−371 ± 3 kcal·mol−1[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Plutonium(III)-fluorid ist eine chemische Verbindung aus den Elementen Plutonium und Fluor. Es besitzt die Formel PuF3 und gehört zur Stoffklasse der Fluoride.

Darstellung[Bearbeiten]

Plutonium(III)-fluorid ist schwerlöslich und entsteht durch die Umsetzung einer wässrigen Plutonium(III)-nitratlösung mit Fluoridsalzen im Sauren.[5]

\mathrm{Pu^{3+}\ _{(aq)} +\ 3\ F^- \ _{(aq)} \longrightarrow \ PuF_3\ _{(s)} \downarrow}

Plutonium(III)-fluorid kann auch durch Reaktion von Plutonium(IV)-oxalat und Wasserstoff, Plutonium(III)-oxalat oder Plutonium(IV)-oxid mit Fluorwasserstoff gewonnen werden.[3]

\mathrm{2 \ Pu(C_2O_4)_2 +  H_2 + 6 \ HF \longrightarrow 2 \ PuF_3 + 2 \ CO + 2 \ CO_2 + 4 \ H_2O}
\mathrm{Pu_2(C_2O_4)_3 + 6 \ HF \longrightarrow 2 \ PuF_3 + 3 \ CO + 3 \ CO_2}
\mathrm{2 \ PuO_2 + H_2 + 6 \ HF \longrightarrow 2 \ PuF_3 + 4 \ H_2O}

Eigenschaften[Bearbeiten]

Plutonium(III)-fluorid bildet violette Kristalle mit einem Schmelzpunkt von 1396 °C.[1] Es kristallisiert in der Lanthanfluoridstruktur mit den Gitterparametern a = 709,3 pm und c = 725,4 pm.[1] Hierbei ist jeder Plutoniumkern von neun Fluorkernen in einer verzerrten dreifach-überkappten trigonal-prismatischen Struktur umgeben. Es ist sublimierbar und hat eine größere Flüchtigkeit als Americium(III)-fluorid.[6][7]

Verwendung[Bearbeiten]

Um Plutonium zur Wiederaufbereitung durch Ausfällung aus Lösungen abtrennen zu können, wurde eine Methode zur Ausfällung als Plutonium(III)-fluorid entwickelt, um eine Alternative zur bisherigen Plutoniumperoxidmethode zu haben.[8] Eine Studie des Los Alamos National Laboratory aus dem Jahr 1957 berichtet, dass diese Methode gegenüber dem bisherigen Verfahren weniger effektiv sei,[9] während eine neuere Studie, die vom US-Office of Scientific and Technical Information in Auftrag gegeben wurde, diese als eine eher effektivere Methode darstellt.[10][11]

Sicherheitshinweise[Bearbeiten]

Einstufungen nach der Gefahrstoffverordnung liegen nicht vor, obwohl die chemische Giftigkeit bekannt ist. Wichtig sind die auf der Radioaktivität beruhenden Gefahren, sofern es sich um eine dafür relevante Stoffmenge handelt.

Einzelnachweise[Bearbeiten]

  1. a b c d e f g Gmelins Handbuch der anorganischen Chemie, System Nr. 71, Transurane, Teil C, S. 101–104.
  2. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Properties of the Elements and Inorganic Compounds, S. 4-81.
  3. a b  Georg Brauer (Hrsg.): Handbuch der Präparativen Anorganischen Chemie. 3., umgearb. Auflage. Band II, Enke, Stuttgart 1978, ISBN 3-432-87813-3, S. 1299.
  4. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  5. G. A. Burney, F. W. Tober: Precipitation of Plutonium Trifluoride, in: Ind. Eng. Chem. Process Des. Dev., 1965, 4 (1), S. 28–32 (doi:10.1021/i260013a009).
  6. Stephen C. Carniglia, B. B. Cunningham: Vapor Pressures of Americium Trifluoride and Plutonium Trifluoride, Heats and Free Energies of Sublimation, in: J. Am. Chem. Soc., 1955, 77 (6), S. 1451–1453 (doi:10.1021/ja01611a015).
  7. P. D. Kleinschmidt: Sublimation Studies of Plutonium Trifluoride, in: Journal of Nuclear Materials, 1989, 167, S. 131–134 (doi:10.1016/0022-3115(89)90434-0).
  8. C. K. Gupta: Hydrometallurgy in Extraction Processes. CRC Press, 1990, ISBN 978-0-849-36805-9, S. 206–208 (eingeschränkte Vorschau in der Google-Buchsuche).
  9. R. S. Winchester: Aqueous Decontamination of Plutonium from Fission Product Elements.. Los Alamos Scientific Laboratory of the University of California, 1957, S. 9–10 (Zugriff am 20. Juni 2008).
  10. L. L. Martella, M. T. Saba, G. K. Campbell: Laboratory-scale evaluations of alternative plutonium precipitation methods.. United States Office of Scientific and Technical Information, (Zugriff am 20. Juni 2008).
  11. K. F. Grebenkin, Yu. N. Zuev, L. N. Lokhtin, N. A. Novoselov, A. V. Panov, V. A. Simonenko, V. G. Subbotin, V. M. Berezkin, E. N. Zvonarev, O. I. Kozlov, V. I. Lobanov, V. P. Mashirev, V. V. Shatalov, A. D. Maksimov, D. Yu. Chuvilin: Synthesis of Plutonium Trifluoride from Weapons – Plutonium as a Potential Fuel for Power Reactors, in: Atomic Energy, 1997, 83 (2), S. 614–621 (doi:10.1007/BF02413891).

Literatur[Bearbeiten]

  • David L. Clark, Siegfried S. Hecker, Gordon D. Jarvinen, Mary P. Neu: Plutonium, in: Lester R. Morss, Norman M. Edelstein, Jean Fuger (Hrsg.): The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht 2006; ISBN 1-4020-3555-1, S. 813–1264 (doi:10.1007/1-4020-3598-5_7).