Quotientenabbildung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Quotientenabbildung, kanonische Surjektion oder kanonische Projektion ist ein mathematischer Begriff, der in vielen mathematischen Teilgebieten auftritt. Es handelt sich dabei um eine Abbildung, die jedem Element einer Menge, auf der eine Äquivalenzrelation vorliegt, seine Äquivalenzklasse zuordnet. In der Kategorientheorie wird der Begriff für Quotientenobjekte verallgemeinert.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Ist ein Vektorraum und ein Untervektorraum, so kann man den Quotientenvektorraum bilden, der aus allen Nebenklassen mit besteht. Die Abbildung , die den Vektor auf abbildet, nennt man die Quotientenabbildung.[1]
  • Ist allgemeiner eine Gruppe mit einem Normalteiler , so kann man die Quotientengruppe der Nebenklassen bilden, wobei . Wieder nennt man die kanonische Abbildung die Quotientenabbildung.

Beiden Beispielen liegt eine Äquivalenzrelation zu Grunde. Im Vektorraumbeispiel hat man genau dann, wenn , und ganz analog im Gruppenbeispiel genau dann, wenn . Daher verallgemeinert die folgende Konstruktion obige Beispiele.

  • Es sei eine Menge und eine Äquivalenzrelation auf . Dann sei die Menge der Äquivalenzklassen . Die Abbildung heißt Quotientenabbildung.
  • Ist eine surjektive Abbildung, so ist durch eine Äquivalenzrelation gegeben. In diesem Falle ist die Abbildung bijektiv. Man nennt dann auch eine Quotientenabbildung.
  • Ist eine surjektive Abbildung auf einem topologischen Raum , so gibt es eine feinste Topologie auf , bzgl. der stetig ist, die sogenannte Quotiententopologie. Daher nennt man die Abbildung auch in diesem Fall eine Quotientenabbildung.[2]

Diese Beispiele werden in der Kategorientheorie zu sogenannten Quotientenobjekten verallgemeinert. In der Tat sind solche Quotientobjekte gewisse Epimorphismen, so dass es sich dabei im Wesentlichen um die hier vorgestellten Quotientenabbildungen handelt, allerdings müssen Morphismen in der Kategorientheorie keine Abbildungen sein.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992 ISBN 3-528-07262-8, Kap. 0, §1
  2. Johann Cigler, Hans-Christian Reichel: Topologie. Eine Grundvorlesung, Bibliographisches Institut Mannheim (1978), ISBN 3-411-00121-6, Kapitel 2.6.

Siehe auch[Bearbeiten | Quelltext bearbeiten]