Satz von Jegorow

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Satz von Jegorow ist ein Satz aus der Maßtheorie, der den Zusammenhang zwischen punktweiser Konvergenz μ-fast überall und fast gleichmäßiger Konvergenz zeigt. Teils finden sich auch die Schreibweisen Satz von Egorow, Satz von Egorov oder Satz von Egoroff, die auf eine Übertragung des Namens ins Englische oder Französische zurückzuführen sind. Der Satz ist nach Dmitri Fjodorowitsch Jegorow benannt, der ihn 1911 bewies. Die Aussage wurde bereits 1910 von Carlo Severini gezeigt, weshalb sich auch die Benennung als Satz von Egorov-Severini (oder verwandte Schreibweisen) findet[1].

Satz[Bearbeiten | Quelltext bearbeiten]

Gegeben sei ein endlicher Maßraum sowie messbare Funktionen

.

Konvergiert die Funktionenfolge punktweise μ-fast überall gegen , so konvergiert sie auch fast gleichmäßig gegen .[2], [3]

Bemerkung[Bearbeiten | Quelltext bearbeiten]

Da aus der fast gleichmäßigen Konvergenz immer die Konvergenz fast überall folgt, liefert der Satz von Jegorow im Fall eines endlichen Maßraumes die Äquivalenz der beiden Konvergenzarten.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Das folgende Beispiel zeigt, dass die Aussage bei nicht endlichen Maßraumen im Allgemeinen falsch ist. Betrachtet man die Funktionenfolge

auf dem Maßraum , so konvergiert diese Funktionenfolge punktweise (fast überall) gegen 0, denn für beliebiges ist für immer

.

Aber die Folge konvergiert nicht fast gleichmäßig gegen 0, denn ist , so gilt für jede messbare Menge mit Maß kleiner und jedes , dass , denn hat Maß 1, kann also nicht in enthalten sein, und daher

für alle , das heißt auf keinem Komplement einer Menge des Maßes kleiner kann gleichmäßige Konvergenz vorliegen.

Ursprüngliche Formulierung[Bearbeiten | Quelltext bearbeiten]

In der Originalarbeit von Jegorow wurde der Satz nur für Funktionen auf einem Intervall formuliert:

Théorème – Si l'on a une suite de fonctions mesurables convergente pour tous les point d'un intervalle AB sauf, peut-être, les points d'un ensemble de mesure nulle, on pourra tourjours enlever de l'intervalle AB un ensemble de mesure aussi petite qu'on voudra e tel que pour l'ensemble complémentaire [ de mesure =  ] la suite est uniformément convergente.[4]

Übersetzung: Wenn man eine Folge messbarer Funktionen hat, die für alle Punkte eines Intervalls AB konvergiert, bis auf möglicher Weise die Punkte einer Menge des Maßes Null, so kann man stets aus dem Intervall AB eine Menge des Maßes , das so klein ist wie man auch will, entfernen, so dass die Folge auf der Komplementmenge [ mit Maß  ] gleichmäßig konvergent ist.

Der heutige Begriff der fast gleichmäßigen Konvergenz war noch nicht in Verwendung. Jegorow schlug in derselben Arbeit vor, diese Konvergenz nach Hermann Weyl wesentlich gleichmäßig zu nennen.

Verallgemeinerungen[Bearbeiten | Quelltext bearbeiten]

Der Satz von Jegorow gilt auch für messbare Funktionen, die Werte in einem separablen metrischen Raum annehmen.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

  • Vektorielles Maß: für eine Verallgemeinerung des Satzes für Maße mit Werten in einem Banachraum

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. L.D. Kudryavtsev: Egorov theorem. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8 (online).
  2. Elstrodt: Maß- und Integriationstheorie. 2009, S. 252.
  3. Donald L. Cohn: Measure Theory. Birkhäuser, Boston MA 1980, ISBN 3-7643-3003-1, Satz 3.1.3: Egoroff's theorem
  4. D. Th. Egorofff: Sur les suites des fonctions mesurables: Comptes rendus 152 (1911), Seiten 244-246