Schurzerlegung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Als Schur-Zerlegung oder Schursche Normalform (nach Issai Schur) bezeichnet man in der Linearen Algebra, einem Teilgebiet der Mathematik, eine wichtige Matrix-Zerlegung, genauer ein Trigonalisierungsverfahren.

Definition[Bearbeiten]

A sei eine quadratische Matrix mit Einträgen aus \mathbb{K} (also A \in \mathbb{K}^{n \times n}, wobei \mathbb{K} entweder für \mathbb{R} oder für \mathbb C steht). Zerfällt das charakteristische Polynom von A über \mathbb{K} in Linearfaktoren, so existiert eine unitäre Matrix U \in \mathbb{K}^{n \times n}, sodass

R = U^* A U\quad (U^* ist die zu U adjungierte Matrix)

eine obere Dreiecksmatrix ist.

Bemerkungen[Bearbeiten]

  • Da R eine obere Dreiecksmatrix ist, kann sie als Summe einer Diagonalmatrix D und einer strikten oberen Dreiecksmatrix N dargestellt werden (D, N \in \mathbb{K}^{n \times n}):
R = D + N
Es gilt dann:
  • D ist eindeutig bis auf die Reihenfolge der Diagonalelemente und wird als der Diagonalanteil der Schur-Zerlegung bezeichnet.
  • N ist nilpotent, im Allgemeinen nur bezüglich ihrer Frobeniusnorm eindeutig und wird der nilpotente Anteil der Schur-Zerlegung genannt.
  • Die Frobeniusnorm von N ist genau dann 0, wenn A normal ist.

Konstruktion einer Schur-Zerlegung[Bearbeiten]

Sei A\in\mathbb{K}^{n \times n}. Zunächst muss ein Eigenwert \lambda_1 und ein entsprechender Eigenvektor v_1 zu A gefunden werden. Nun werden n-1 Vektoren w_2,\ldots,w_n gewählt, so dass v_1,w_2,\ldots,w_n eine orthonormale Basis in \mathbb{K}^{n} bilden. Diese Vektoren bilden die Spalten einer Matrix V_1 mit

V_1^* A V_1=\begin{bmatrix} \lambda_1 & * \\ 0 & A_1 \end{bmatrix} ,

wobei A_1 eine (n-1)\times(n-1) Matrix ist. Nun wird dieser Vorgang für A_1 wiederholt. Es entsteht eine unitäre Matrix V_2 mit

 V_2^* A_1 V_2 = \begin{bmatrix} \lambda_2 & * \\ 0 & A_2 \end{bmatrix} ,

wobei A_2 eine (n-2)\times(n-2) Matrix ist. Dann gilt

 Q_2^* A Q_2 = \begin{bmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & A_2 \end{bmatrix},

wobei Q_2 = V_1 \hat{V}_2 mit \hat{V}_2 = \begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix} gilt. Die gesamte Prozedur wird (n-1)-mal wiederholt, bis die Matrizen V_1,\ldots,\hat{V}_{n-1} vorliegen. Dann ist  Q := V_1 \hat{V}_2 \hat{V}_3 \cdots \hat{V}_{n-1} eine unitäre Matrix und R := Q^*A Q eine obere Dreiecksmatrix. Damit ist die Schur-Zerlegung der Matrix A bestimmt.

Beispiel[Bearbeiten]

Betrachte beispielsweise die Matrix A = \begin{bmatrix} -2 & 1 & 3 \\ 2 & 1 & -1 \\ -7 & 2 & 7 \end{bmatrix} mit den Eigenwerten \lambda_1 = \cdots = \lambda_3 = 2 (die Matrix ist nicht diagonalisierbar, weil die Dimension des mit diesem Eigenwert assoziierten Eigenraums 1 beträgt).

Wir wählen als Basis für den Anfang die Standard-Basis \langle e_1, e_2, e_3 \rangle, wobei e_j den j-ten Einheitsvektor bezeichnet.

Für A_1 = A bestimmen wir einen Eigenvektor zu 2, zum Beispiel \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} mit Darstellung v_1 := 1e_1 + 1e_2 + 1e_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} und ergänzen ihn zu einer linear unabhängigen Basis, z. B. \langle v_1, e_1, e_3 \rangle. Aus dieser neuen Basis erzeugen wir die Basistransformation V_1 = ( v_1 | e_1 | e_3 ) und berechnen V_1^{-1} A V_1 = \begin{bmatrix} 2 & 2 & -1 \\ 0 & -4 & 4 \\ 0 & -9 & 8 \end{bmatrix} daraus lässt sich ablesen, dass A_2 = \begin{bmatrix} -4 & 4 \\ -9 & 8 \end{bmatrix}.

Für A_2 bestimmen wir einen Eigenvektor zu 2, z. B. \begin{bmatrix} 2 \\ 3 \end{bmatrix} mit Darstellung v_2 := 0v_1 + 2e_1 + 3e_3 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} und ergänzen ihn zu einer linear unabhängigen Basis, z. B. \langle v_1, v_2, e_3 \rangle. Aus dieser neuen Basis erzeugen wir die Basistransformation V_2 = ( v_1 | v_2 | e_3 ) und berechnen V_2^{-1} A V_2 = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}.

Wie oben gezeigt, kann die Basis beliebig gewählt werden, allerdings wird die Sache sehr einfach und interessant, wenn die Wahl der Standardbasis durchgezogen wird (sofern möglich). Dadurch ändern sich die vorherigen Schritte wie folgt:

Für A_1 = A bestimmen wir einen Eigenvektor zu 2, z. B. \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} mit Darstellung v_1 := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} und ergänzen ihn zu einer linear unabhängigen Basis, z. B. \langle v_1, e_2, e_3 \rangle. Aus dieser neuen Basis erzeugen wir die Basistransformation V_1 = ( v_1 | e_2 | e_3 ) und berechnen V_1^{-1} A V_1 = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & -4 \\ 0 & 1 & 4 \end{bmatrix} daraus lässt sich ablesen, dass A_2 = \begin{bmatrix} 0 & -4 \\ 1 & 4 \end{bmatrix}.

Für A_2 bestimmen wir einen Eigenvektor zu 2, z. B. \begin{bmatrix} 2 \\ -1 \end{bmatrix} mit Darstellung v_2 := \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} und ergänzen ihn zu einer linear unabhängigen Basis, z. B. \langle v_1, v_2, e_3 \rangle. Aus dieser neuen Basis erzeugen wir die Basistransformation V_2 = ( v_1 | v_2 | e_3 ) und berechnen V_2^{-1} A V_2 = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{bmatrix}.

Hier ist die Berechnung der Darstellung der Vektoren in der richtigen Basis sozusagen intuitiv und somit auch weniger fehleranfällig, zudem ist die finale Basistransformation hier V_2 auch eine Dreiecksmatrix.

Mit dem Gram-Schmidtschen Orthogonalisierungsverfahren kann die erhaltene Basistransformationsmatrix zu einer unitären Matrix gemacht werden, wie verlangt.

Weblinks[Bearbeiten]