Nilpotente Matrix

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die nilpotente Matrix und der nilpotente Endomorphismus sind Begriffe aus dem mathematischen Teilgebiet der linearen Algebra.

Definition[Bearbeiten | Quelltext bearbeiten]

Eine quadratische Matrix bezeichnet man als nilpotent, wenn eine ihrer Potenzen die Nullmatrix ergibt:

für ein

Entsprechend bezeichnet man einen Vektorraum-Endomorphismus als nilpotent, wenn es eine Zahl gibt, sodass die Nullabbildung ist. Die kleinste natürliche Zahl , welche dieses Kriterium erfüllt bezeichnet man als Nilpotenzgrad oder Nilpotenzindex. Zwischen nilpotenten Matrizen und nilpotenten Endomorphismen gibt es folgenden Zusammenhang: Zu jeder nilpotenten Matrix ist die Linksmultiplikation dieser Matrix an Spaltenvektoren ein nilpotenter Endomorphismus. Umgekehrt ist jede Darstellungsmatrix eines nilpotenten Endomorphismus nilpotent.

Äquivalente Definitionen[Bearbeiten | Quelltext bearbeiten]

Für eine quadratische Matrix mit Zeilen und Spalten sind folgende Aussagen äquivalent:

  • ist nilpotent.
  • Es gibt ein mit und . Dann ist nilpotent mit dem Nilpotenzgrad .
  • Das charakteristische Polynom von hat die Form .
  • Das Minimalpolynom von hat die Form für ein .
  • ist ähnlich zu einer strikten Dreiecksmatrix, das heißt es existiert eine invertierbare Matrix , so dass gilt:

  • Speziell für Matrizen über oder anderen algebraisch abgeschlossenen Körpern gilt, dass sie genau dann nilpotent sind, wenn ihr einziger Eigenwert 0 ist.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Ein Beispiel für eine nilpotente Matrix mit Nilpotenzgrad 2 ist die Matrix

da .

Eigenschaften nilpotenter Matrizen[Bearbeiten | Quelltext bearbeiten]

Wenn eine Matrix nilpotent mit Nilpotenzgrad k ist, dann …

  • hat sie nur den Eigenwert Null. Das folgt direkt aus der Form des charakteristischen Polynoms , dessen Nullstellen die Eigenwerte sind.
  • ist sie nicht invertierbar, da sie den Eigenwert null besitzt und somit ihr Kern nicht trivial ist.
  • ist entweder oder sie ist nicht diagonalisierbar, da alle Diagonalmatrizen ungleich nicht nilpotent sind.
  • ist die Determinante Null: .
  • ist die Spur Null.
  • hat sie keinen vollen Rang, d. h. ihre Spaltenvektoren sind linear abhängig. Es sind jedoch nicht alle quadratischen Matrizen mit linear abhängigen Spalten auch gleichzeitig nilpotent.
  • ist invertierbar ( ist die Einheitsmatrix), denn es ist .

Da eine nilpotente Matrix ein Spezialfall eines nilpotenten Elements eines Ringes ist, gelten die im Artikel „Nilpotentes Element“ getroffenen allgemeinen Aussagen auch hier.

Jordan-Chevalley-Zerlegung[Bearbeiten | Quelltext bearbeiten]

Jeder Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper lässt sich eindeutig als Summe eines diagonalisierbaren und eines nilpotenten Endomorphismus schreiben. Diese Zerlegung wird als Jordan-Chevalley-Zerlegung bezeichnet und ist im Wesentlichen eine Folge der Existenz der Jordanschen Normalform.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Gerd Fischer: Lineare Algebra. (Eine Einführung für Studienanfänger) (= Vieweg Studium. Grundkurs Mathematik). 14., durchgesehene Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03217-0, S. 384.