Spritzbeton

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Ein Bauarbeiter trägt Spritzbeton auf eine Betonstahlmatte auf
Mit Spritzbeton stabilisierte Felswand in Neuseeland

Spritzbeton ist ein Beton, der in einer geschlossenen Schlauchleitung zur Einbaustelle gefördert, dort aus einer Spritzdüse pneumatisch aufgetragen und durch die Aufprallenergie verdichtet wird.

Herstellung und Verwendung von Spritzbeton ist in Deutschland mit der DIN 18551 geregelt. Die Rezeptur entspricht weitgehend derjenigen von Normalbeton nach DIN 1045-2.

Obwohl in Deutschland seit 1920 bekannt und verwendet, meist unter dem Namen Torkretbeton, hat die Anwendung dieses Verfahrens in der zweiten Hälfte des 20. Jahrhunderts stark zugenommen.

Anwendung[Bearbeiten | Quelltext bearbeiten]

Zur Anwendung kommt Spritzbeton heute vor allem bei der Reparatur und Verstärkung von Betonbauteilen, zur Gelände- und Felskonsolidierung, zum temporären Verbau bei Großbaustellen und im Tunnelbau sowie zur Schaffung naturähnlicher Oberflächen an Freizeit- und Sportkletteranlagen.

Wegen der Besonderheiten des Verfahrens und der erforderlichen Ausrüstung wird Spritzbeton meist von spezialisierten Firmen ausgeführt.

Das Spritzbetonverfahren hat den Vorteil, dass keine oder nur eine einseitige Schalung benötigt wird, dass das Verdichten nach dem Aufbringen des Betons entfällt und dass im Allgemeinen eine sehr gute Haftung am Untergrund erreicht wird.

Beim Spritzvorgang prallt ein Teil des Spritzguts (der so genannte Rückprall) ab. Da anfangs besonders die groben Anteile des Zuschlags vom festen Untergrund abprallen, verbleibt eine Betonschicht mit erhöhtem Feinkorn- und Zementanteil. Die feinen Anteile der ersten Schicht verkrallen sich durch die Anprallenergie mit dem Untergrund, wodurch sich eine tragfähige Haftbrücke für die nachfolgend aufgetragenen Schichten ergibt. [1]

Das Auftragsverfahren führt zu einer sehr guten Verdichtung des Betons. Der weitgehend hohlraumfreie Beton ist dicht, belastbar und schützt den enthaltenen Bewehrungsstahl vor Korrosion. Diese Eigenschaften wurden schon in den 20er Jahren genutzt, um dünne und weitgespannte Schalentragwerke etwa nach der Zeiss-Dywidag-Schalenbauweise zu errichten.

In den Vereinigten Staaten und Australien werden Estrich und Wandflächen vielfach mit dekorativ eingefärbten und strukturierten Oberflächen versehen, die beispielsweise gepflasterte Natursteinflächen oder Werksteinmauern nachgeahmen. Seit 1999 ist auch ein Verfahren zur Gestaltung von dekorativen Wandoberflächen mit Spritzbeton bekannt. Beispielsweise kann auf der rohen Oberfläche eine netzartige Matrize befestigt werden, die nach dem Auftrag einer dünnen Schicht eingefärbten Spritzbetons wieder abgezogen wird. So kann der Eindruck des Fugenrasters einer gemauerten Naturstein- oder Ziegelwand erreicht werden.

Trockenspritzbeton[Bearbeiten | Quelltext bearbeiten]

Beim Trockenspritzverfahren werden Zement und Zuschlagstoffe trocken zusammengemischt und in einem Druckluftstrom freischwimmend durch eine Rohr- oder Schlauchleitung zu einer Mischdüse befördert. Erst im Düsenbereich wird das Trockengemisch mit dem nötigen Anmachwasser versehen und zugleich zum Auftragen zu einem kontinuierlichen Strahl beschleunigt.

Dieses Verfahren wird beispielsweise bei der Fugensanierung von Natursteinmauerwerk an historischen Bauwerken angewandt.

Vorteile Trockenspritzverfahren

  • Niedrige Investitionen
  • Flexibel
    • die Wassermenge kann angepasst werden, um etwa die Haftfähigkeit des Betons an Überhängen zu verbessern
    • leichtere Schläuche mit kleinerem Durchmesser
    • Arbeitsunterbrechungen sind problemlos möglich
  • Förderung über Distanzen bis 1400 Meter (Idealdistanz etwa 100 Meter)
  • Geringer Reinigungsaufwand der Schläuche
  • Geringe Wartungskosten der Maschine

Nassspritzbeton[Bearbeiten | Quelltext bearbeiten]

Beim Nassspritzverfahren werden Zement, Zuschlagstoffe und Wasser zusammengemischt und mittels einer Mörtelpumpe zu einer Spritzdüse befördert, welche die Mischung mittels gesondert zugeführter Druckluft zerstäubt und zum Auftrag beschleunigt.

Die am Ende der Schlauchleitung angebrachte Düse stellt eine Verengung dar, durch welche die hindurchströmende Mischung beschleunigt und damit die Verdichtungsenergie erhöht wird.

Mit dem Nassspritzverfahren ist es einfacher, während des gesamten Spritzvorgangs eine gleichmäßige Qualität zu erzielen. Die fertige Mischung wird in eine Pumpe eingefüllt und mit einer Kolbenpumpe oder einer Schneckenpumpe durch den Schlauch gefördert. An der Düse am Schlauchende erfolgt die Luftzugabe mit etwa sieben bis neun Kubikmeter pro Minute bei einem Druck von sieben bis neun Bar. Die Druckluft beschleunigt den Mörtel, so dass es durch den Anprall zu einer guten Verdichtung und Haftung auf der Oberfläche kommt.

Vorteile Nassspritzverfahren

  • Sehr geringe Staubentwicklung
  • Größere Auftragsleistung
  • Bessere Homogenität der Mischung
  • Geringerer Verlust durch Rückprall (beim Trockenspritzverfahren durchschnittlich 20 bis 25 %)

Geschichte des Betonspritzverfahrens (Torkretverfahren)[Bearbeiten | Quelltext bearbeiten]

Im Jahre 1908 meldete der amerikanische Tier-Präparator Carl E. Akeley die Erfindung eines „Apparates zum Mischen und Auftragen von plastischen Materialien“ zum Patent an. Bei diesem „Cement Gun“ genannten Gerät, wurde ein trockenes Beton – Zementmörtelgemisch durch einen Förderschlauch zur Einbaustelle geblasen. Mittels eines am Boden der Füllkammer befindlichen Taschenrades erfolgte die gleichmäßige Einspeisung des Materials in den Förderschlauch, das dann beim Durchfliegen der Spritzdüse mit einem am Ende des Schlauchs befindlichen Wasserring gleichmäßig befeuchtet wurde. Zwei übereinander angeordnete Druckkammern, die abwechselnd mit Druckluft be- und entlüftet wurden, gestatteten die kontinuierliche Füllung der Kammern mit Mischgut.

Im Jahre 1919 meldete der Deutschamerikaner Carl Weber, der als Ingenieur in Amerika mit diesem Gerät Erfahrung gemacht hatte, in Deutschland ein eigenes Patent für eine Trockenspritzmaschine an. Er gründete eine Firma zum Bau und zum Vertrieb der Maschinen, die Deutsche Torkret Baugesellschaft. In der Folge bürgerte sich für diese Maschinen die Bezeichnung Torkret-Maschinen, und für das Verfahren der Begriff Torkretverfahren, beziehungsweise torkretieren allgemein ein. Die später in Torkret GmbH umbenannte Firma (heutige Torkret AG), mit Sitz in Berlin und ab 1956 in Essen, war viele Jahre führend bei der Anwendung der Maschinen. Vor allem bei der Instandsetzung der im Laufe des Krieges schwer geschädigten Bestands an Betonbauwerken gewann das Torkretverfahren eine große Bedeutung.

Ab Mitte der 1950er-Jahre wurde das Nassspritzverfahren entwickelt. Auch wurde gespritzter Beton nun für den Bau von Tunnel und Kavernen eingesetzt. Die damals entwickelte Neue Österreichische Tunnelbauweise, bei der unmittelbar nach dem Ausräumen des Tunnellochs eine (bewehrte) Betonschale zur Unterstützung und Konsolidierung auf die freigelegten Tunnelflächen gespritzt wurde, setzte sich allgemein durch.

Die zunehmende Anwendung von gespritzten Beton für Ingenieurbauwerke jeder Art, erforderte die Normung dieses Verfahrens. Mit der im Jahre 1974 veröffentlichten ersten Fassung der DIN 18551 (Spritzbeton) wurde statt der zuvor gebräuchlichen Bezeichnung Torkretverfahren der Begriff Spritzbeton für das Verfahren eingeführt.

Betonzusammensetzung des Spritzbeton[Bearbeiten | Quelltext bearbeiten]

Maßgebend für die Zusammensetzung des Ausgangsbetons (der Mischungsentwurf), sind die für Förderung und Spritzen des Betons erforderlichen Verarbeitbarkeit und die geforderte Druckfestigkeit des aufgespritzen Betons. Die Verarbeitung bestimmt den Wasseranspruch (Wasserbindemittelwert) von dem wiederum die Druckfestigkeit abhängt.

Bei dem Trockenspritzverfahren kann der Spritzenführer die Wassermenge noch während des Betoniervorgangs an die Bedürfnisse anpassen.

Beim Nassspritzverfahren wird der Ausgangsbeton in plastischer Konsistenz (Ausbreitmaß 35 bis 41 Zentimeter) hergestellt. Der Wasseranspruch ist auch von der Kornform und Kornzusammensetzung des Zuschlages abhängig. Er kann durch Verflüssiger vermindert werden.

Durch den (anfänglichen) Rückprall der groben Anteile des Zuschlags ergibt sich eine Veränderung der Ausgangsmischung, die beim Entwurf der erforderlichen Betonzusammensetzung berücksichtigt werden muss.

Standardmischung[Bearbeiten | Quelltext bearbeiten]

Eine typische Mischung setzt sich aus Portlandzement (CEM I 42,5 R) und Zuschlag mit Größtkorn von 8 mm zusammen und hat einen Wasserzementwert von 0,5. Dies ergibt nach 2 Tagen eine Festigkeit R von 20 MPa und einen Endwert von 42,5 MPa nach 28 Tagen. Zur Verbesserung der Pumpbarkeit kann bis höchstens 25 Prozent (nach ÖN B 4710-1) Flugasche beigemengt werden

Bindemittelgehalt[Bearbeiten | Quelltext bearbeiten]

Bei der Herstellung der Mischung für Trockenspritzbeton beträgt die Bindemittelmenge meist zwischen 320 und 460 Kilogramm pro Kubikmeter Beton. Um den eigentlichen Zementgehalt des eingebauten Spritzbetons zu ermitteln, muss der Rückprall miteinbezogen werden. Im Vergleich zur Ausgangsmischung führt der Rückprall hauptsächlich zu einem Verlust der grobkörnigen Zuschläge und somit zu einer Zunahme des Zementgehalts. Bei einer typischen Standardmischung mit 350 Kilogramm Zement pro Kubikmeter ergibt ein Rückprall von 25 Volumenprozent einen Zementgehalt von etwa 450 Kilogramm pro Kubikmeter im Endprodukt.

Ergiebigkeit[Bearbeiten | Quelltext bearbeiten]

Bei 25 Prozent Rückprall ergeben 1000 Liter Trockengemisch ungefähr 555 Liter anhaftenden Festspritzbeton. (Wenn durch den Rückprall ein Viertel des Trockengemischs verloren geht, bleiben von 1000 Liter Trockengemisch noch 750 Liter übrig. Diese 750 Liter werden durch die Aufprallwucht um das 1,35-fache auf 555 Liter verdichtet. Das Verhältnis des Festspritzbetonvolumens zum Trockengemisch beträgt demnach 1:1,8.)

Wasserzementwert[Bearbeiten | Quelltext bearbeiten]

Der Wasserzementwert ist ein entscheidender Faktor für die Betonqualität. Die Gesamt-Wassermenge setzt sich beim Trockenspritzverfahren aus dem an der Düse zugeführten Zugabewasser und der in den Zuschlägen enthaltenen Eigenfeuchte zusammen.

Im Gegensatz zum Nassspritzverfahren variiert beim Trockenspritzverfahren der Wasserzementwert, da die Zugabemenge vom Düsenführer bestimmt wird. Dies wird oft als großer Nachteil angesehen. In der Praxis ergibt sich jedoch ein relativ gleichmäßiger Wert, da sich eine zu geringer Wasserzugabe sogleich in einer übermäßigen Staubbildung äußert, während eine zu große Wassermenge den Spritzbeton herabfließen läßt. Bei korrekter Ausführung sollte sich der Wasserzementwert auf diese Weise unterhalb von 0,5 einstellen.

Eigenfeuchte der Zuschläge[Bearbeiten | Quelltext bearbeiten]

Ein wichtiger Aspekt beim Trockenspritzverfahren ist die Eigenfeuchtigkeit der Zuschläge. Ist die Mischung zu trocken, entsteht beim Spritzen zu viel Staub. Ist die Eigenfeuchtigkeit zu hoch, kann dies zu Problemen führen: Der Spritzbetondurchsatz nimmt stark ab, Maschine und Förderleitungen verkrusten, und es kommt zu Verstopfungen. Die Eigenfeuchtigkeit der Mischung sollte zwischen drei und sechs Prozent liegen. Neben den vor Ort hergestellten Mischungen hat sich in den letzten Jahren auch der Gebrauch von fertigen Trockenmischungen, die in Säcken oder Silos geliefert werden, durchgesetzt. Ordnungsgemäß hergestellt und gelagert enthalten diese Mischungen keine Eigenfeuchtigkeit.

Um der Staubbildung vorzubeugen, ist es ratsam, das Zuschlagsmaterial zu benetzen, bevor es in die Maschine gelangt. Dazu können eigens ausgerüstete Fördersysteme oder spezielle Benetzungsdüsen verwendet werden.

Zusatzmittel[Bearbeiten | Quelltext bearbeiten]

Auf dem Markt sind verschiedene Zusatzmittel erhältlich, um die Eigenschaften des Spritzbetons zu steuern. Die wichtigsten sind die abbindebeschleunigenden Zusatzmittel, die die Erstarrungszeit verringern. Der Spritzbeton bindet schneller ab und erreicht höhere Frühfestigkeiten. Dadurch können die nachfolgenden Schichten schneller und in größeren Schichten aufgebracht werden. Bei großen Bauvorhaben tragen Erstarrungsbeschleuniger erheblich zu einer Zunahme der Produktionskapazität bei und sind wichtige Voraussetzungen für viele Anwendungen. Beispielsweise ist die Frühfestigkeit bei Untertagebauten und Baugrubensicherungen eine Grundanforderung. Gängige Beschleuniger sind Natriumwasserglas und Calciumchlorid, wobei sich Calciumchlorid nachteilig auf die Korrosionsfestigkeit des Bewehrungsstahls auswirkt.

Bei der Verwendung von Erstarrungs-Beschleunigern können Festigkeitsminderungen von 20 bis 50 Prozent auftreten. Gegebenenfalls muss dem Mischungsentwurf für einen Spritzbeton der allgemeinen Festigkeitsklasse C 25/30 ein Beton der Festigkeitsklasse C 35/45 bis C 45/55 zugrunde gelegt werden. Die erzielbaren Werte müssen durch eine Prüfung ermittelt werden.

Beim Trockenspritzverfahren kommen auch Staubminderer zur Verringerung der Staubentwicklung zur Anwendung. Wie bei allen Zusatzmittels ist eine genaue Dosierung erforderlich, um die Qualitätsanforderungen zu erfüllen.

Fasern[Bearbeiten | Quelltext bearbeiten]

Dem Spritzbeton können Stahl- und synthetische Fasern zugegeben werden. Dies ergibt ein höheres Energieabsorbtionsvermögen und/oder ein besseres Schwindverhalten des Spritzbetons.

Stahlfaserbeton in Form von Stahlfaserspritzbeton wird besonders für Baugrubenverbauungen und Hangsicherungen verwendet. Es kann dabei auf eine Stahlbewehrung vollkommen verzichtet werden. Da weniger Bearbeitungsschritte notwendig sind, kann der Einsatz wirtschaftlich interessant sein.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Spritzbeton – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Erläuterung des Verfahrens auf der Seite Torkret.de; abgerufen im Dez. 2016