Trapezoeder

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Hexagonales Trapezoeder

Ein Trapezoeder ist ein Polyeder, das von deckungsgleichen „schiefen“ Vierecken begrenzt ist – also von solchen, bei denen keine Seite einer anderen parallel ist (Trapezoide oder Trapeze im älteren Sinn[1]). Ein Trapezoeder kann man sich als eine Bipyramide vorstellen, bei der die obere gegen die untere Pyramide um einen beliebigen Winkel verdreht ist. Ein Trapezoeder wird n-gonal genannt, wobei n die Hälfte der Anzahl seiner Flächen ist.

Trapezoeder kommen in der Natur als Kristallform vor: Sie sind die allgemeine Flächenform der enantiomorphen Kristallklassen 32 (trigonal-trapezoedrische), 422 (tetragonal-trapezoedrische) und 622 (hexagonal-trapezoedrische Klasse).

Trapezoeder mit höherer Symmetrie[Bearbeiten | Quelltext bearbeiten]

Ein Trapezoeder mit höherer Symmetrie entsteht, wenn die Flächen der oberen Pyramide genau in der Mitte zwischen denen der unteren liegen. Der Winkel der Verdrehung ist dann 180°/m bei einer m-zähligen Pyramide. Die Flächen solcher Körper sind Drachenvierecke („Deltoide“). Diese höhersymmetrischen Trapezoeder werden auch Deltoeder oder Antipyramide genannt; ihre dualen Polyeder sind gerade Antiprismen.

Deltoidalikositetraeder[Bearbeiten | Quelltext bearbeiten]

Daneben wird gelegentlich auch das kubische Deltoidalikositetraeder, ein Körper mit 24 drachenförmigen Flächen, Trapezoeder genannt.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Brockhaus’ Kleines Konversations-Lexikon. 5. Aufl. 1911, Artikel „Trapez“

Weblinks[Bearbeiten | Quelltext bearbeiten]