Vielteilchentheorie

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der statistischen Mechanik und theoretischen Festkörperphysik ist die Vielteilchentheorie (englisch many-body theory) die quantenmechanische Beschreibung einer sehr großen Zahl miteinander wechselwirkender Mikroteilchen (Bosonen, Fermionen) und ihres kollektiven Verhaltens.

Ein solches System unterscheidet sich in seinen physikalischen Eigenschaften wesentlich von einem isolierten (freien) Teilchen. Das grundlegende Problem besteht dabei nicht in der Anzahl beteiligter Teilchen, sondern in der Berücksichtigung ihrer Wechselwirkung und Abhängigkeiten.

Die Vielteilchentheorie berücksichtigt im Gegensatz zum Mehrkörperproblem der klassischen Mechanik auch Quanteneffekte wie die Ununterscheidbarkeit von Quantenteilchen und die Teilchencharakterierung über den Spin und benutzt Methoden der Quantenfeldtheorie wie die Feldquantisierung. Deren Übertragung auf Probleme der Festkörperphysik in den 1950er Jahren (David Pines, Philippe Nozières, Alexei Alexejewitsch Abrikossow, Lew Landau, Arkadi Migdal, David Bohm, Murray Gell-Mann, Julian Schwinger, Joaquin Mazdak Luttinger u. a.) führte zur Entstehung der Vielteilchentheorie.

Die quantenmechanische Beschreibung des Vielteilchenproblems wird vor allem durch die mathematische Form der gesuchte Vielteilchen-Wellenfunktion bzw. des Vielteilchen-Feldoperators erschwert, der in irgendeiner Form von allen Teilchenpositionen und allen Spinzuständen abhängt (enthält also beliebig viele, beliebig komplizierte Mischterme). Durch Zerlegung in Einteilchen-Zuständen, welche je durch eine Position bzw. Spin charakterisiert sind, aber unter Berücksichtigung der Ununterscheidbarkeit der Teilchen durch die Slater-Determinante kann die Konstruktion eines antisymmetrischen Mehrteilchen-Zustandes, wenn auch a-posteriori, aus mehreren Einteilchen-Zuständen erfolgen. Die Einteilchen-Zuständen bewegen sich dabei als unabhängige Teilchen in einen gemittelten Potential, wodurch die Theorie auch als mean field theory bezeichnet wird. Die Hartree-Fock-Methode als ein Vertreter dieser Theorie verfolgt genau diesen Ansatz, was zum Auftreten der nicht klassisch erklärbaren Austauschwechselwirkung führt. Vielteilchen-Korrekturterme höher Ordnung - Quantenkorrelation - kann die Methode nicht liefern. Hier genau greifen die Methoden der Vielteilchentheorie an. Eine mögliche physikalische Beschreibung geschieht hier durch:

Da mit ihr nicht nur Festkörper (Metalle, Halbleiter, Dielektrika, Magnetismus und andere), sondern auch Flüssigkeiten, Supraflüssigkeiten, Supraleitung, Plasmen u. a. behandelt werden, also Materie in allen möglichen Phasen, steht diese Entwicklung auch für den Übergang von der theoretischen Festkörperphysik zur Physik der kondensierten Materie.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Eberhard K. U. Gross, Erich Runge: Vielteilchentheorie, 2. Auflage, Teubner Stuttgart; ISBN 3519030861
  • Fetter, Walecka Quantum theory of many particle systems, New York, McGraw Hill 1971
  • Wolfgang Nolting: Grundkurs Theoretische Physik 7, 6. Auflage, Springer Lehrbuch; ISBN 3-540-24117-5
  • D. J. Thouless, "The quantum mechanics of many-body systems", 2d ed., New York, Academic Press, 1961, 1972. ISBN 0126915601, deutsch Quantenmechanik der Vielteilchensysteme, BI Hochschultaschenbuch, 1964

Weblinks[Bearbeiten | Quelltext bearbeiten]