Koeffizientenvergleich

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Koeffizientenvergleich ist ein Verfahren aus der linearen Algebra, bei dem die Koeffizienten von zwei Linearkombinationen einer linear unabhängigen Teilmenge eines Vektorraums verglichen werden. Häufig verwendet wird ein Polynomraum als Vektorraum mit Monomen als linear unabhängige Teilmenge, zum Beispiel bei der Partialbruchzerlegung. Man verwendet dabei die Tatsache, dass zwei Linearkombinationen derselben linear unabhängigen Teilmenge genau dann gleich sind, wenn die entsprechenden Koeffizienten gleich sind.

Zwei Polynome

und

sind genau dann gleich, wenn ihre Koeffizienten übereinstimmen:

Es sind die beiden Polynome und gegeben. Für welche Werte von und sind die beiden Polynome gleich?

Gelten muss:

Also wird verglichen:

  1. (Vergleich der Koeffizienten von )
  2. (Vergleich der Koeffizienten von )

Lösung: und

Trigonometrische Polynome

[Bearbeiten | Quelltext bearbeiten]


Verglichen werden:

  1. (Vergleich der Koeffizienten von )
  2. (Vergleich der Koeffizienten von )

Lösung: ;