„Metallhydrid“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Keine Bearbeitungszusammenfassung
Zeile 22: Zeile 22:


Eine weitere Anwendung von Metallhydrid ist beispielsweise der [[Nickel-Metallhydrid-Akkumulator]].
Eine weitere Anwendung von Metallhydrid ist beispielsweise der [[Nickel-Metallhydrid-Akkumulator]].

Metallhydride werden auch in reversiblen chemischen Systemen zur Energiespeicherung eingesetzt, wozu zahlreiche Metallhydrid-Metall-Systeme gehören. Eine Besonderheit dieser Metallhydrid-Speichersysteme ist, dass der bei der thermischen Beladung freigesetzte
Wasserstoff auch als Brennstoff verwendet werden kann. Damit lassen sich Metallhydridspeicher sowohl als Wärme- als auch als Wasserstoffspeicher (Brennstoffspeicher) betrachten.<ref name="Eckhard Rebhan">{{Literatur| Autor=Eckhard Rebhan | Titel=Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie | Verlag=Springer-Verlag | ISBN=978-3-642-55451-3 | Jahr=2013 | Online={{Google Buch | BuchID=pGKgBgAAQBAJ | Seite=629 }} | Seiten=629 }}</ref>


== Siehe auch ==
== Siehe auch ==

Version vom 8. März 2017, 20:34 Uhr

Metallhydrid ist eine Bezeichnung für Verbindungen von Metallen mit Wasserstoff und eine Untergruppe der Hydride. Durch unterschiedlichen Bindungsarten des Wasserstoffs werden sie in verschieden Formen eingeteilt.

Systematik und Eigenschaften

Metallhydride können überwiegend ionische oder überwiegend kovalente Bindungsverhältnisse aufweisen. So zeigt Wasserstoff in Verbindungen mit den Elementen der zweiten Periode des Periodensystems sowohl negative (zum Beispiel Lithiumhydrid, Berylliumhydrid oder Borhydrid) als auch positive (zum Beispiel Methan, Ammoniak, Wasser und Fluorwasserstoff) Polarität. Die Oxidationszahl des Wasserstoffs ist in einem Metallhydrid - I statt wie im Normalfall + I. Daher kann Wasserstoff in seinen Verbindungen entweder als Hydrid oder als Proton aufgefasst werden, wobei der Übergang fließend ist. Entsprechend ist eine Unterteilung in salzartige, kovalente oder metallische Metallhydride üblich. Die Erweiterung dieser Systematik auf Kombinationen von Metallen, die zur Bildung von salzartigen (A) und metallischen (M) Hydriden in der Lage sind, führt zu ternären Hydriden AxMyHz, die als Hydridokomplexe oder Hydridometallate aufgefasst werden können. Zu den salzartigen Metallhydriden zählen stöchiometrisch zusammengesetzte Hydride der Alkalimetalle und der Erdalkalimetalle (ausgenommen Beryllium). Diese sind farblosen Feststoffe und bilden typische salzartige Strukturen mit hydridischem Wasserstoff (H-). Die Alkalimetallhydride Lithiumhydrid, Natriumhydrid, Kaliumhydrid, Rubidiumhydrid und Caesiumhydrid kristallisieren im Natriumchlorid-Typ und die Erdalkalimetallhydride Calciumhydrid, Strontiumhydrid und Bariumhydrid im Bleidichlorid-Typ. Das weniger ionische Magnesiumdihydrid kristallisiert im Rutil-Typ. Die Synthese der meisten salzartigen Metallhydride erfolgt durch Erhitzen der Metalle unter Wasserstoff. Bei Kontakt dieser Hydride mit Wasser treten heftige Reaktionen unter Wasserstoffentwicklung auf, wobei sich schwere Alkalimetallhydride bereits an feuchter Luft entzünden. Zu den kovalente Metallhydriden zählen die Hydride der Gruppen 11 und 12 (Kupferhydrid, Goldhydrid, Zinkhydrid, Cadmiumhydrid, Quecksilberhydrid), mit Ausnahme von Silberhydrid, sowie Aluminiumhydrid, Galliumhydrid und Berylliumhydrid. Da diese kovalenten Metallhydride nur bei tiefen Temperaturen stabil sind (Goldhydrid zersetzt sich bei Raumtemperatur), erfolgt ihre Darstellung durch Hydridolyse. Dazu werden Metallhalogenide in organischen Lösungsmitteln mit hydridischem Wasserstoff (hierzu dienen Lithiumhydrid, Natriumborhydrid oder Lithiumaluminiumhydrid) umgesetzt. Als metallartige Metallhydride werden die Hydride der Übergangsmetalle der Gruppen 3-6 und 10 sowie Metalle der Lanthanoide und Actinoide bezeichnet. Sie bilden mit Wasserstoff binäre Hydride, die durch direkte Reaktion hochreiner Metallpulver mit Wasserstoff bei hohen Temperaturen und häufig unter Druck dargestellt werden können. Dabei entstehen nichtstöchiometrische Metallhydride mit großer Phasenbreite realisierbar sind. Die meisten haben metallisches Aussehen und metallische oder halbleitende Eigenschaften. Die Kristallstruktur metallartiger Metallhydride beruht auf dichtesten Kugelpackungen von Metallatomen, deren Lücken durch Wasserstoffatome aufgefüllt werden. Daher können sie als Einlagerungsverbindungen betrachtet werden. Beim Einbau von Wasserstoffatomen in eine Metallstruktur entsteht zunächst eine feste Lösung (α-Phase) mit relativ geringem Wasserstoffgehalt in der die Metallstruktur unverändert erhalten bleibt. Durch weitere Lückenbesetzung können die Grenzzusammensetzungen MH (Oktaederlücken), MH2 (Tetraederlücken) und MH3 (Tetraeder- und Oktaederlücken) realisiert werden. Die Kombination zweier Metallhydride die salzartige (oder metallartige) Hydride bilden, ergibt wieder ein salzartiges (oder metallartiges) ternäres Metallhydrid.[1]

Metallhydride sind entweder salzartig aufgebaut oder ähneln Lösungen von Wasserstoff in Metall oder Legierungen. Dabei werden Wasserstoff-Moleküle auf der Oberfläche des Metalls zunächst adsorbiert und dann als elementarer Wasserstoff in das Metallgitter eingebaut. Dadurch entsteht ein recht sprödes Metallhydrid, das aber luft- und wasserunempfindlich ist.

Der Mechanismus der Aufnahme von Wasserstoff war lange Zeit unbekannt, da bei den bisher bekannten Metallhydriden die Aufnahme des Wasserstoffs die Kristallstruktur veränderte und so Modellierungen und theoretische Berechnungen unmöglich machte.Die LaMg2Ni-Legierung hat jedoch eine streng geordnete Kristallstruktur, die auch nach der Wasserstoff-Aufnahme erhalten bleibt. Dadurch konnte festgestellt werden, dass die Wasserstoffatome über die regulären Zwischenräume in das Metallgitter eindringen und sich jeweils eines der in der Legierung frei beweglichen Elektronen aneignen. Auf diese Weise können sich die Wasserstoffatome chemisch mit den Nickelatomen verbinden: Es entstehen isolierende NiH4-Moleküle. Die Konzentration des aufgenommenen Wasserstoffs hängt streng von der Anzahl der freien Elektronen der Legierung ab.

Verwendung

Metallhydride haben wichtige Verwendungen in der Synthese, Katalyse (Palladium und Nickel) und in technischen Anwendungen. So wird Lithiumaluminiumhydrid in der organischen Synthese als selektives Hydrierungsreagenz eingesetzt. Thermisch stabile Metallhydride wie Zirconiumhydrid werden alternativ zu Elementen mit niedriger Ordnungszahl (Beryllium, Kohlenstoff) als Neutronenfänger (Moderatoren) in Kernkraftwerken eingesetzt.[1]

Technisch verwendet werden Metallhydride hauptsächlich in Metallhydridspeichern für Wasserstoff. Man findet sie aber auch in Metallen, die länger Wasserstoff ausgesetzt waren, da sie sich dort ungewollt bilden. Die Bildung von Metallhydriden in Metallen beim Kontakt mit Wasserstoff kann auch zur Wasserstoffversprödung führen.

Im Allgemeinen nehmen Metalle das Wasserstoffgas bei einer bestimmten Temperatur und einem bestimmten Druck auf (es bilden sich die entsprechenden Metallhydride) und setzen es wieder frei, wenn die Temperatur leicht erhöht oder der Druck verringert wird.

Unterschiedliche Metalle können Wasserstoff unterschiedlich gut aufnehmen, sodass die Aufnahmefähigkeit pro Kubikzentimeter Metall von 20 bis 600 Kubikzentimeter gasförmigen Wasserstoff schwankt. In Metallhydriden kann bei gleichem Volumen zum Teil mehr Wasserstoff gespeichert werden als Wasserstoff in flüssiger Form einnimmt.

Es gibt Legierungen (wie zum Beispiel LaMg2Ni), die zwar elektrische Leiter sind, aber zum Isolator werden, sobald sie mit Wasserstoff vollgesogen sind (dann: LaMg2NiH7). Aufgrund dieser beiden Eigenschaften könnten solche Legierungen der Entwicklung von empfindlichen Wasserstoffdetektoren dienen.

Eine weitere Anwendung von Metallhydrid ist beispielsweise der Nickel-Metallhydrid-Akkumulator.

Metallhydride werden auch in reversiblen chemischen Systemen zur Energiespeicherung eingesetzt, wozu zahlreiche Metallhydrid-Metall-Systeme gehören. Eine Besonderheit dieser Metallhydrid-Speichersysteme ist, dass der bei der thermischen Beladung freigesetzte Wasserstoff auch als Brennstoff verwendet werden kann. Damit lassen sich Metallhydridspeicher sowohl als Wärme- als auch als Wasserstoffspeicher (Brennstoffspeicher) betrachten.[2]

Siehe auch

Einzelnachweise

  1. a b Christoph Janiak, Hans-Jürgen Meyer, Dietrich Gudat, Ralf Alsfasser: Riedel Moderne Anorganische Chemie. Walter de Gruyter, 2012, ISBN 978-3-11-024901-9, S. 268 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Eckhard Rebhan: Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie. Springer-Verlag, 2013, ISBN 978-3-642-55451-3, S. 629 (eingeschränkte Vorschau in der Google-Buchsuche).