„Stoßmittelpunkt“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K Oszillationszentrum in Einleitung erwaehnt
legenden der bilder vertauscht, weitere begriffe
Zeile 13: Zeile 13:


== Stoßmittelpunkt ==
== Stoßmittelpunkt ==
[[Datei:Beam with pivot P, center of mass S and center of percussion C.svg|mini|100px|Abb. 1: Physikalisches Pendel (braun) mit Lager P, Schwerpunkt S und Schwingungs­mittel­punkt C]]
[[Datei:Beam with pivot P, center of mass S and center of percussion C.svg|mini|100px|Abb. 1: Physikalisches Pendel (braun) mit Schwerpunkt S und Stoß­mittel­punkt C]]
Betrachtet wird ein fester Körper, der in einem Punkt P frei drehbar aufgehängt ist. Der Einfachheit halber soll der Körper eine Symmetrieebene besitzen, in der der [[Massenmittelpunkt]] S, das Lager P und die Wirkungslinie der Stoßkraft F liegen. Dann führt der Körper eine ebene Bewegung aus, wo sich alle Körperpunkte in Parallelebenen aufhalten, siehe Abbildung 1.
Betrachtet wird ein fester Körper, der in einem Punkt P frei drehbar aufgehängt ist. Der Einfachheit halber soll der Körper eine Symmetrieebene besitzen, in der der [[Massenmittelpunkt]] S, das Lager P und die Wirkungslinie der Stoßkraft F liegen. Dann führt der Körper eine ebene Bewegung aus, wo sich alle Körperpunkte in Parallelebenen aufhalten, siehe Abbildung 1.


Auf den nach unten hängenden Körper soll im Punkt C in der Symmetrieebene, exzentrisch eine Kraft F horizontal so wirken, dass bei der einsetzenden Drehbewegung der Lagerpunkt P in Ruhe bleibt, keine horizontale [[Lagerreaktion]] auftritt und sich die einsetzende Bewegung als reine Drehung um P darstellt. P ist dann der anfängliche [[Momentanpol]].
Auf den nach unten hängenden Körper soll im Punkt C in der Symmetrieebene, exzentrisch eine Kraft F horizontal so wirken, dass bei der einsetzenden Drehbewegung der Lagerpunkt P in Ruhe bleibt, keine horizontale [[Lagerreaktion]] auftritt und sich die einsetzende Bewegung als reine Drehung um P darstellt. P ist dann der anfängliche [[Momentanpol]].<ref name="autenrieth"/>{{rp|525}}


Gemäß dem [[Drallsatz]] in der Ebene „[[Drehmoment]] um einen Punkt ist gleich [[Massenträgheitsmoment]] um diesen Punkt mal [[Winkelbeschleunigung]]“ wird der Körper in Drehung versetzt, wenn die Kraft nicht im Massen&shy;mittel&shy;punkt angreift. Der Kraftangriffspunkt soll nun so gewählt werden, dass die Drehung um S dieselbe Winkelbeschleunigung <math>\ddot\phi</math> (zweifache [[Zeitableitung]] von ''ϕ'') erfährt wie die Drehung um P. Die Winkelbeschleunigung ist proportional zum Drehmoment „Kraft mal Hebelarm“ um den Drehpunkt und umgekehrt proportional zum Massenträgheitsmoment um diesen Punkt. Für die Punkte P und S ergibt sich:
Gemäß dem [[Drallsatz]] in der Ebene „[[Drehmoment]] um einen Punkt ist gleich [[Massenträgheitsmoment]] um diesen Punkt mal [[Winkelbeschleunigung]]“ wird der Körper in Drehung versetzt, wenn die Kraft nicht im Massen&shy;mittel&shy;punkt angreift. Der Kraftangriffspunkt soll nun so gewählt werden, dass die Drehung um S dieselbe Winkelbeschleunigung <math>\ddot\phi</math> (zweifache [[Zeitableitung]] von ''ϕ'') erfährt wie die Drehung um P. Die Winkelbeschleunigung ist proportional zum Drehmoment „Kraft mal Hebelarm“ um den Drehpunkt und umgekehrt proportional zum Massenträgheitsmoment um diesen Punkt. Für die Punkte P und S ergibt sich:


:<math>\mathsf{\ddot\phi=\frac{(r+e)F}{\theta_P}\stackrel!=\frac{eF}{\theta_S}}</math>
:<math>\mathsf{\ddot\phi=\frac{(r+e)F}{\theta_P}
\stackrel!=\frac{eF}{\theta_S}}</math>


Mit dem [[Steinerscher Satz|Steiner’schen Satz]] <math>\mathsf{\theta_P=mr^2+\theta_S}</math> folgt
Mit dem [[Steinerscher Satz|Steiner’schen Satz]] <math>\mathsf{\theta_P=mr^2+\theta_S}</math> folgt<ref name="autenrieth"/>{{rp|525}}<ref>{{Literatur
| Autor=D. Gross, W. Hauger, [[Jörg Schröder (Bauingenieur)| J. Schröder]], W. A. Wall
| Titel=Technische Mechanik 3
| TitelErg=Kinetik
| Seiten=111–181
| Verlag=Springer Vieweg Verlag
| Ort=Heidelberg
| Datum=2021
| ISBN=978-3-662-63064-8
| Online=[https://link.springer.com/chapter/10.1007/978-3-662-63065-5_3 Bewegung eines starren Körpers]
| DOI=10.1007/978-3-662-63065-5}}</ref>


:<math>\mathsf{|PC|=r+e=r+\frac{\theta_S}{mr}}</math>&nbsp;&nbsp;&nbsp;oder&nbsp;&nbsp;&nbsp;<math>\mathsf{|SC|=e=\frac{\theta_S}{mr}}</math>
:<math>\mathsf{|PC|=r+e=r+\frac{\theta_S}{mr}}</math>&nbsp;&nbsp;&nbsp;oder&nbsp;&nbsp;&nbsp;<math>\mathsf{|SC|=e=\frac{\theta_S}{mr}}</math>
Zeile 28: Zeile 39:
Anwendungen:
Anwendungen:
* Wird eine [[Billardkugel]] auf einer glatten Ebene in ihrem Stoß&shy;mittel&shy;punkt angestoßen, dann rollt sie auf der Ebene schlupflos ab, siehe [[Eulersche Kreiselgleichungen#Anstoß einer Billardkugel]].
* Wird eine [[Billardkugel]] auf einer glatten Ebene in ihrem Stoß&shy;mittel&shy;punkt angestoßen, dann rollt sie auf der Ebene schlupflos ab, siehe [[Eulersche Kreiselgleichungen#Anstoß einer Billardkugel]].
* Fasst man den [[Schaft (Werkzeug)|Stiel]] eines [[Hammer]]s oder [[Beil]]s im Stoß&shy;mittel&shy;punkt, dann muss die Hand beim Hämmern keinen Prellstoß aushalten. Gewöhnlich ist der Stiel so lang, dass sich der Stoß&shy;mittel&shy;punkt an seinem Ende befindet.<ref name="autenrieth"/>{{rp|525}}
* Wenn ein Körper mit Symmetrieebene, wie das Pendel eines [[Schlagwerk (Uhr)|Schlagwerkes]], der [[Glockenklöppel]] oder das [[Ballistisches Pendel|ballistische Pendel]], in seinem Stoß&shy;mittel&shy;punkt aufgehängt wird, dann erfährt die Drehachse keinen Stoßdruck.<ref name="autenrieth"/>{{rp|525}}
* Wenn ein Körper mit Symmetrieebene, wie das Pendel eines [[Schlagwerk (Uhr)|Schlagwerkes]], der [[Glockenklöppel]] oder das [[Ballistisches Pendel|ballistische Pendel]], in seinem Stoß&shy;mittel&shy;punkt aufgehängt wird, dann erfährt die Drehachse keinen Stoßdruck.<ref name="autenrieth"/>{{rp|525}}
* Insbesondere wenn eine aufklappende Tür durch einen [[Türstopper]] bei 2/3 ihrer Breite aufgehalten wird, werden die [[Türangel]]n nur minimal belastet, siehe das [[#Beispiel]] mit B≈0. Die hier vernachlässsigte [[Elastizität (Physik)|Elastizität]] der Tür führt zu [[Biegeschwinger|Biegeschwinungen]] und [[Lagerreaktion]]en, die nur bei schwungvollem Aufschlag beachtenswert sind.
* Insbesondere wenn eine aufklappende Tür durch einen [[Türstopper]] bei 2/3 ihrer Breite aufgehalten wird, werden die [[Türangel]]n nur minimal belastet, siehe das [[#Beispiel]] mit B≈0. Die hier vernachlässsigte [[Elastizität (Physik)|Elastizität]] der Tür führt zu [[Biegeschwinger|Biegeschwinungen]] und [[Lagerreaktion]]en, die nur bei schwungvollem Aufschlag beachtenswert sind.
* Fasst man den [[Schaft (Werkzeug)|Stiel]] eines [[Hammer]]s oder [[Beil]]s im Stoß&shy;mittel&shy;punkt, dann muss die Hand beim Hämmern keinen Prellstoß aushalten. Gewöhnlich ist der Stiel so lang, dass sich der Stoß&shy;mittel&shy;punkt an seinem Ende befindet.<ref name="autenrieth"/>{{rp|525}}


== Schwingungsmittelpunkt ==
== Schwingungsmittelpunkt ==
[[Datei:Compound pendulum with pivot P, center of gravity S and center of oscillation C.svg|mini|100px|Abb. 2: Physikalisches Pendel (braun) mit Schwerpunkt S und Stoß&shy;mittel&shy;punkt C]]
[[Datei:Compound pendulum with pivot P, center of gravity S and center of oscillation C.svg|mini|100px|Abb. 2: Physikalisches Pendel (braun) mit Lager P, Schwerpunkt S und Schwingungs&shy;mittel&shy;punkt C]]
Betrachtet wird derselbe Körper, der im Punkt P unverschieblich aber drehbar aufgehängt wird. Die [[Gewichtskraft]] mg greift in seinem [[Gravizentrum|Schwerpunkt]] S an. Wenn dieser, wie in Abbildung&nbsp;2, nicht [[lotrecht]] unter oder über P liegt, übt die Gewichtskraft ein [[Drehmoment]] aus, das den Körper zum Pendeln anregt. Bei kleinen Schwingungen hat dieses sogenannte [[Physikalisches Pendel|physikalische Pendel]] die [[Kreisfrequenz]]
Betrachtet wird derselbe Körper, der im Punkt P unverschieblich aber drehbar aufgehängt wird. Die [[Gewichtskraft]] mg greift in seinem [[Gravizentrum|Schwerpunkt]] S an. Wenn dieser, wie in Abbildung&nbsp;2, nicht [[lotrecht]] unter oder über P liegt, übt die Gewichtskraft ein [[Drehmoment]] aus, das den Körper zum Pendeln anregt. Bei kleinen Schwingungen hat dieses sogenannte [[Physikalisches Pendel|physikalische Pendel]] die [[Kreisfrequenz]]


Zeile 53: Zeile 64:
:<math>\mathsf{\omega_m^2=\frac{g}{r+e}}</math>
:<math>\mathsf{\omega_m^2=\frac{g}{r+e}}</math>


Hier ist |SC|=e der Abstand des Massenpunkts vom Schwerpunkt. Der Schwingungs&shy;mittel&shy;punkt C liegt dort, wo beide Kreisfrequenzen übereinstimmen:
Hier ist |SC|=e der Abstand des Massenpunkts vom Schwerpunkt und die Länge |PC| wird auch ''reduzierte Länge'' genannt.<ref name="autenrieth"/>{{rp|447}} Der Schwingungs&shy;mittel&shy;punkt C liegt dort, wo beide Kreisfrequenzen übereinstimmen:


:<math>\mathsf{\omega_p^2=\frac{rmg}{\theta_P}=\omega_m^2=\frac{g}{r+e}
:<math>\mathsf{\omega_p^2=\frac{rmg}{\theta_P}=\omega_m^2=\frac{g}{r+e}
Zeile 63: Zeile 74:
:<math>\mathsf{|PC|=r+e=\frac{mr^2+\theta_S}{mr}=r+\frac{\theta_S}{mr}}</math>&nbsp;&nbsp;&nbsp;oder&nbsp;&nbsp;&nbsp;<math>\mathsf{|SC|=e=\frac{\theta_S}{mr}}</math>
:<math>\mathsf{|PC|=r+e=\frac{mr^2+\theta_S}{mr}=r+\frac{\theta_S}{mr}}</math>&nbsp;&nbsp;&nbsp;oder&nbsp;&nbsp;&nbsp;<math>\mathsf{|SC|=e=\frac{\theta_S}{mr}}</math>


ergibt.<ref name="autenrieth"/>{{rp|447}}
ergibt.

Die Schwingungsdauer eines physikalischen Pendels ändert sich nicht, wenn Aufhängepunkt und Schwingungsmittelpunkt vertauscht werden.<ref name="autenrieth"/>{{rp|448}}


== Mathematisches Pendel ==
== Mathematisches Pendel ==
{{Siehe auch|Mathematisches Pendel}}
{{Siehe auch|Mathematisches Pendel}}
Das mathematische Pendel besteht aus einem [[Massenpunkt]], der im [[Schwerefeld]] an einem masselosen Faden aufgehängt ist. Beim Massenpunkt stimmen Schwerpunkt und Massen&shy;mittel&shy;punkt überein und relativ zu ihnen hat der Punkt keine Massenträgheit (''θ''<sub>S</sub>=0). Beim mathematischen Pendel stimmen deshalb Schwerpunkt, Massen&shy;mittel&shy;punkt, Stoß- und Schwingungs&shy;mittel&shy;punkt überein.
Das mathematische Pendel besteht aus einem [[Massenpunkt]], der im [[Schwerefeld]] an einem masselosen Faden aufgehängt ist. Beim Massenpunkt stimmen Schwerpunkt und Massen&shy;mittel&shy;punkt überein und relativ zu ihnen hat der Punkt kein Massenträgheitsmoment (''θ''<sub>S</sub>=0). Beim mathematischen Pendel stimmen deshalb Schwerpunkt, Massen&shy;mittel&shy;punkt, Stoß- und Schwingungs&shy;mittel&shy;punkt überein.


== Geschichte ==
== Geschichte ==

Version vom 7. Mai 2022, 17:37 Uhr

Der Stoßmittelpunkt und der Schwingungs­mittel­punkt sind in der Mechanik identische Punkte eines festen Körpers. Fasst man den Stiel eines Hammers oder Beils im Stoß­mittel­punkt, dann muss die Hand beim Hämmern keinen Prellstoß aushalten.[1]:525 Reduziert man andererseits den aufgehängten Körper auf einen Massenpunkt im Schwingungs­mittel­punkt, dann hat dieses sogenannte mathematische Pendel dieselbe Schwingungsdauer wie der ursprüngliche Körper.[1]:447 Oszillations­zentrum ist eine andere Bezeichnung für den Schwingungs­mittel­punkt.

Die genannten Eigenschaften legen den Schwingungs- und Stoß­mittel­punkt eindeutig fest, und es stellt sich heraus, dass beide Punkte übereinstimmen.

Stoßmittelpunkt

Abb. 1: Physikalisches Pendel (braun) mit Schwerpunkt S und Stoß­mittel­punkt C

Betrachtet wird ein fester Körper, der in einem Punkt P frei drehbar aufgehängt ist. Der Einfachheit halber soll der Körper eine Symmetrieebene besitzen, in der der Massenmittelpunkt S, das Lager P und die Wirkungslinie der Stoßkraft F liegen. Dann führt der Körper eine ebene Bewegung aus, wo sich alle Körperpunkte in Parallelebenen aufhalten, siehe Abbildung 1.

Auf den nach unten hängenden Körper soll im Punkt C in der Symmetrieebene, exzentrisch eine Kraft F horizontal so wirken, dass bei der einsetzenden Drehbewegung der Lagerpunkt P in Ruhe bleibt, keine horizontale Lagerreaktion auftritt und sich die einsetzende Bewegung als reine Drehung um P darstellt. P ist dann der anfängliche Momentanpol.[1]:525

Gemäß dem Drallsatz in der Ebene „Drehmoment um einen Punkt ist gleich Massenträgheitsmoment um diesen Punkt mal Winkelbeschleunigung“ wird der Körper in Drehung versetzt, wenn die Kraft nicht im Massen­mittel­punkt angreift. Der Kraftangriffspunkt soll nun so gewählt werden, dass die Drehung um S dieselbe Winkelbeschleunigung (zweifache Zeitableitung von ϕ) erfährt wie die Drehung um P. Die Winkelbeschleunigung ist proportional zum Drehmoment „Kraft mal Hebelarm“ um den Drehpunkt und umgekehrt proportional zum Massenträgheitsmoment um diesen Punkt. Für die Punkte P und S ergibt sich:

Mit dem Steiner’schen Satz folgt[1]:525[2]

   oder   

Anwendungen:

Schwingungsmittelpunkt

Abb. 2: Physikalisches Pendel (braun) mit Lager P, Schwerpunkt S und Schwingungs­mittel­punkt C

Betrachtet wird derselbe Körper, der im Punkt P unverschieblich aber drehbar aufgehängt wird. Die Gewichtskraft mg greift in seinem Schwerpunkt S an. Wenn dieser, wie in Abbildung 2, nicht lotrecht unter oder über P liegt, übt die Gewichtskraft ein Drehmoment aus, das den Körper zum Pendeln anregt. Bei kleinen Schwingungen hat dieses sogenannte physikalische Pendel die Kreisfrequenz

mit:

r: Abstand des Schwerpunkts vom Stützpunkt (│PS│)
m: Masse des Körpers
g: Schwerebeschleunigung und
θP: Massenträgheitsmoment des Körpers um P und eine Drehachse senkrecht zur Schwingungsebene.

Beim mathematischen Pendel mit Massenpunkt in C ist die Kreisfrequenz nur vom Abstand |PC|=r+e der Masse vom Lager und nicht von der Masse selbst abhängig:

Hier ist |SC|=e der Abstand des Massenpunkts vom Schwerpunkt und die Länge |PC| wird auch reduzierte Länge genannt.[1]:447 Der Schwingungs­mittel­punkt C liegt dort, wo beide Kreisfrequenzen übereinstimmen:

Nach dem Steiner’schen Satz sind die Trägheitsmomente um P und S durch verknüpft, sodass sich wie beim Stoß­mittel­punkt

   oder   

ergibt.[1]:447

Die Schwingungsdauer eines physikalischen Pendels ändert sich nicht, wenn Aufhängepunkt und Schwingungsmittelpunkt vertauscht werden.[1]:448

Mathematisches Pendel

Das mathematische Pendel besteht aus einem Massenpunkt, der im Schwerefeld an einem masselosen Faden aufgehängt ist. Beim Massenpunkt stimmen Schwerpunkt und Massen­mittel­punkt überein und relativ zu ihnen hat der Punkt kein Massenträgheitsmoment (θS=0). Beim mathematischen Pendel stimmen deshalb Schwerpunkt, Massen­mittel­punkt, Stoß- und Schwingungs­mittel­punkt überein.

Geschichte

Jakob I Bernoulli bestimmte 1703 als erster das Oszillations­zentrum eines Pendels, was er bereits auch in einem ersten, etwas unrichtigen Versuch 1686 tat. Dies ist auch gleichzeitig das erste Auftreten des Drallsatzes, der zu seiner Zeit noch nicht bekannt war.[3]

Beispiel

Betrachtet wird der in Abbildung 1 und Abbildung 2 dargestellte, an einem Ende aufgehängte Balken. Er besitzt einen rechteckigen Querschnitt mit Breite B und Höhe H senkrecht zur Bildebene, die Länge R=2r und die Masse m. Ein solcher Balken hat das Massenträgheitsmoment θS=m(R2+B2)/12 um den Massen­mittel­punkt, siehe Liste von Trägheitstensoren#Stab, Parallelogramm und Quader. Der Stoß- und Schwingungs­mittel­punkt befindet sich damit im Abstand

von einem Ende des Balkens. Mit B=r/2=R/4 wie in den Bildern ist

   oder   

Beim dünnen Balken mit vernachlässigbarer Dicke B ist

   bzw.   

Literatur

  1. a b c d e f g h i E. F. Autenrieth, Max Ensslin: Technische Mechanik: Ein Lehrbuch der Statik und Dynamik für Ingenieure. 3. Auflage. Springer-Verlag, Berlin 1922, ISBN 978-3-642-98876-9 (archive.org [abgerufen am 7. Mai 2022]).
  2. D. Gross, W. Hauger, J. Schröder, W. A. Wall: Technische Mechanik 3. Kinetik. Springer Vieweg Verlag, Heidelberg 2021, ISBN 978-3-662-63064-8, S. 111–181, doi:10.1007/978-3-662-63065-5 (Bewegung eines starren Körpers).
  3. Clifford Truesdell: Die Entwicklung des Drallsatzes. In: Gesellschaft für Angewandte Mathematik und Mechanik (Hrsg.): Zeitschrift für Angewandte Mathematik und Mechanik (= Heft 4/5). Band 44, April 1964, S. 149 – 158, doi:10.1002/zamm.19640440402 (wiley.com).