„Satz von Miljutin“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K →‎Verwandter Satz: Leerzeichen vor Beleg entfernt
Ergänzung Referenzen und Historie. Kleinigkeiten.
Zeile 1: Zeile 1:
Der '''Satz von Miljutin''' ({{enS|Miljutin's theorem oder Milutin's theorem }}) ist ein bedeutender [[Theorem|Satz]] aus der Theorie der [[Banachraum|banachschen]] [[Funktionenraum#In der Funktionalanalysis|Funktionenräume]] [[stetig]]er [[Reellwertige Funktion|reellwertiger Funktionen]] und gehört als solcher dem [[Teilgebiete der Mathematik|mathematischen Teilgebiet]] der [[Funktionalanalysis]] an. Er geht auf eine [[Publikation]] des [[Mathematiker]]s [[Alexej Alexejewitsch Miljutin]] aus dem Jahre 1966 zurück und liefert eine grundlegende [[Isomorphie]]aussage für eine gewisse Klasse dieser Funktionenräume.<ref name="FA-NJK-001">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 73, S. 87–88, S. 93–94</ref><ref name="GRA-001">Graham R. Allan: ''Introduction to Banach Spaces and Algebras.'' 2011, S. 149</ref>
Der '''Satz von Miljutin''' ({{enS|Miljutin's theorem oder Milyutin's theorem oder Milutin's theorem}}) ist ein bedeutender [[Theorem|Satz]] aus der Theorie der [[Banachraum|banachschen]] [[Funktionenraum#In der Funktionalanalysis|Funktionenräume]] [[stetig]]er [[Reellwertige Funktion|reellwertiger Funktionen]] und gehört als solcher dem [[Teilgebiete der Mathematik|mathematischen Teilgebiet]] der [[Funktionalanalysis]] an. Er geht auf eine [[Publikation]] des [[Mathematiker]]s [[Alexej Alexejewitsch Miljutin]] (1925–2001) aus dem Jahre 1966 zurück und liefert eine grundlegende [[Isomorphie]]aussage für eine gewisse Klasse dieser Funktionenräume.<ref name="FA-NJK-001">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 73, S. 87–88, S. 93–94</ref><ref name="GRA-001">Graham R. Allan: ''Introduction to Banach Spaces and Algebras.'' 2011, S. 149</ref><ref name="AP-001">Albrecht Pietsch: ''History of Banach Spaces and Linear Operators.'' 2007, S. 137, S. 658</ref>


== Darstellung der Satz ==
== Darstellung der Satz ==
Er besagt folgendes:<ref name="FA-NJK-002">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 73, S. 94</ref><ref name="GRA-001" />
Er besagt folgendes:<ref name="FA-NJK-002">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 73, S. 94</ref><ref name="GRA-001" />
:''Gegeben seien das [[reell]]e [[Einheitsintervall]] <math>I=[0,1] \subset \R</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(I)</math> und in gleicher Weise ein weiterer [[Kompakter Raum|kompakter]] [[metrischer Raum]] <math>K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(K)</math>, beide jeweils versehen mit der [[Supremumsnorm]] <math>{|| \cdot ||}_{\infty}</math>.''<ref group="A">Nach dem [[Weierstraß]]'schen [[Satz vom Maximum]] stimmt hier die Supremumsnorm mit der [[Maximumsnorm]] überein.</ref>
:''Gegeben seien das [[reell]]e [[Einheitsintervall]] <math>I=[0,1] \subset \R</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(I)</math> und in gleicher Weise ein weiterer [[Kompakter Raum|kompakter]], [[metrischer Raum]] <math>K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(K)</math>, beide jeweils versehen mit der [[Supremumsnorm]] <math>{|| \cdot ||}_{\infty}</math>.''<ref group="A">Nach dem [[Weierstraß]]'schen [[Satz vom Maximum]] stimmt hier die Supremumsnorm mit der [[Maximumsnorm]] überein.</ref>
:
:
:''Dann gilt:''
:''Dann gilt:''
Zeile 11: Zeile 11:


== Historie ==
== Historie ==
Miljutin hatte den Satz schon im Jahre 1952 im Rahmen seiner [[Dissertation]] vorgetragen, jedoch nicht in einer [[Fachzeitschrift]] [[Wissenschaftliche Publikation|veröffentlicht]]. Erst als [[Aleksander Pełczyński]] sich in den 1960er Jahren zu einem Besuch in Moskau aufhielt und Miljutin drängte, den Satz zu publizieren, kam er in 1966 zur Veröffentlichung.<ref name="FA-NJK-003">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 88</ref>
Es wird berichtet, dass Miljutin seinen Satz schon im Jahre 1952 im Rahmen seiner [[Dissertation]] vorgetragen, jedoch zunächst nicht in einer [[Fachzeitschrift]] [[Wissenschaftliche Publikation|veröffentlicht]] hätte. Erst [[Aleksander Pełczyński]] soll anlässlich eines Aufenthalts in Moskau in den 1960er Jahren Miljutin gedrängt haben, den Satz zu publizieren, woraufhin er in 1966 zur Veröffentlichung kam.<ref name="FA-NJK-003">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 88</ref> Hinsichtlich des Hintergrunds ist zu erwähnen, dass schon im Jahre 1932 [[Stefan Banach]] in seinem Werk ''Théorie des opérations linéaires'' die Frage aufgeworfene hatte, ob eine Isomorphie der beiden Funktionenräume <math>\mathcal{C}(I)</math> und <math>\mathcal{C} \left( I \times I \right)</math> gegeben sei.<ref name="AP-002">Albrecht Pietsch: ''History of Banach Spaces and Linear Operators.'' 2007, S. 137</ref><ref group="A">Albrecht Pietsch verweist allerdings in seiner ''History of Banach Spaces and Linear Operators'' von 2007 nicht auf Pełczyńskis Rolle, sondern auf die Einflussnahme eines Mathematikers namens ''Wladimir Gurarij'' (?).</ref>


== Verwandter Satz ==
== Verwandter Satz ==
Auf den [[Polen|polnischen]] [[Mathematik]]er [[Karol Borsuk]] geht ein verwandter Satz aus dem Jahre 1933 zurück:<ref name="FA-NJK-004">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 89</ref><ref name="GRA-001" />
Auf den [[Polen|polnischen]] [[Mathematik]]er [[Karol Borsuk]] geht ein verwandter Satz aus dem Jahre 1933 zurück:<ref name="FA-NJK-004">Fernando Albiac, Nigel J. Kalton: ''Topics in Banach Space Theory.'' 2006, S. 89</ref><ref name="GRA-001" />
:''Gegeben seien ein kompakter metrischer Raum <math>K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(K)</math> sowie eine [[abgeschlossene Menge|abgeschlossener]] [[Unterraum#Metrischer Raum|Unterraum]] <math>E \subseteq K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(E)</math>, beide jeweils versehen mit der Supremumsnorm <math>{|| \cdot ||}_{\infty}</math>.''
:''Gegeben seien ein [[Unendlich (Mathematik)#Unendliche Menge|unendlicher]], kompakter, metrischer Raum <math>K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(K)</math> sowie eine [[abgeschlossene Menge|abgeschlossener]] [[Unterraum#Metrischer Raum|Unterraum]] <math>E \subseteq K</math> mit dem zugehörigen <math>\R</math>-Banachraum der stetigen reellen Funktionen <math>\mathcal{C}(E)</math>, beide jeweils versehen mit der Supremumsnorm <math>{|| \cdot ||}_{\infty}</math>.''
:
:
:''Dann gilt:''
:''Dann gilt:''
Zeile 27: Zeile 27:


== Literatur ==
== Literatur ==
* {{Literatur
|Autor=Stefan Banach
|Titel=Théorie des opérations linéaires
|Auflage=
|Reihe=Math. Monographien
|BandReihe=1
|Verlag=[[Polnische Akademie der Wissenschaften|Inst. Math. Poln. Akad. Wiss.]]
|Ort=Warschau
|Datum=1932
|ISBN=}}
* {{Literatur
* {{Literatur
|Autor=K. Borsuk
|Autor=K. Borsuk
Zeile 63: Zeile 73:
|Datum=1966
|Datum=1966
|Seiten=150–156}}
|Seiten=150–156}}
* {{Literatur
|Autor=[[Albrecht Pietsch]]
|Titel=History of Banach Spaces and Linear Operators
|Verlag=[[Birkhäuser Verlag]]
|Ort=Boston, Basel, Berlin
|Datum=2007
|ISBN=0-8176-4367-2
|Online=}}


== Einzelnachweise ==
== Einzelnachweise ==

Version vom 7. August 2023, 21:39 Uhr

Der Satz von Miljutin (englisch Miljutin's theorem oder Milyutin's theorem oder Milutin's theorem) ist ein bedeutender Satz aus der Theorie der banachschen Funktionenräume stetiger reellwertiger Funktionen und gehört als solcher dem mathematischen Teilgebiet der Funktionalanalysis an. Er geht auf eine Publikation des Mathematikers Alexej Alexejewitsch Miljutin (1925–2001) aus dem Jahre 1966 zurück und liefert eine grundlegende Isomorphieaussage für eine gewisse Klasse dieser Funktionenräume.[1][2][3]

Darstellung der Satz

Er besagt folgendes:[4][2]

Gegeben seien das reelle Einheitsintervall mit dem zugehörigen -Banachraum der stetigen reellen Funktionen und in gleicher Weise ein weiterer kompakter, metrischer Raum mit dem zugehörigen -Banachraum der stetigen reellen Funktionen , beide jeweils versehen mit der Supremumsnorm .[A 1]
Dann gilt:
Ist als Menge überabzählbar, so ist zu isomorph.
Insbesondere gilt weiter:
Für je zwei überabzählbare kompakte metrische Räume und sind die zugehörigen banachschen Funktionenräume und stets isomorph.

Historie

Es wird berichtet, dass Miljutin seinen Satz schon im Jahre 1952 im Rahmen seiner Dissertation vorgetragen, jedoch zunächst nicht in einer Fachzeitschrift veröffentlicht hätte. Erst Aleksander Pełczyński soll anlässlich eines Aufenthalts in Moskau in den 1960er Jahren Miljutin gedrängt haben, den Satz zu publizieren, woraufhin er in 1966 zur Veröffentlichung kam.[5] Hinsichtlich des Hintergrunds ist zu erwähnen, dass schon im Jahre 1932 Stefan Banach in seinem Werk Théorie des opérations linéaires die Frage aufgeworfene hatte, ob eine Isomorphie der beiden Funktionenräume und gegeben sei.[6][A 2]

Verwandter Satz

Auf den polnischen Mathematiker Karol Borsuk geht ein verwandter Satz aus dem Jahre 1933 zurück:[7][2]

Gegeben seien ein unendlicher, kompakter, metrischer Raum mit dem zugehörigen -Banachraum der stetigen reellen Funktionen sowie eine abgeschlossener Unterraum mit dem zugehörigen -Banachraum der stetigen reellen Funktionen , beide jeweils versehen mit der Supremumsnorm .
Dann gilt:
Es existiert ein stetiger linearer Operator mit folgenden Eigenschaften:
(i)
(ii) [A 3]
(iii) [A 4]

Siehe auch

Literatur

Einzelnachweise

  1. Fernando Albiac, Nigel J. Kalton: Topics in Banach Space Theory. 2006, S. 73, S. 87–88, S. 93–94
  2. a b c Graham R. Allan: Introduction to Banach Spaces and Algebras. 2011, S. 149
  3. Albrecht Pietsch: History of Banach Spaces and Linear Operators. 2007, S. 137, S. 658
  4. Fernando Albiac, Nigel J. Kalton: Topics in Banach Space Theory. 2006, S. 73, S. 94
  5. Fernando Albiac, Nigel J. Kalton: Topics in Banach Space Theory. 2006, S. 88
  6. Albrecht Pietsch: History of Banach Spaces and Linear Operators. 2007, S. 137
  7. Fernando Albiac, Nigel J. Kalton: Topics in Banach Space Theory. 2006, S. 89

Anmerkungen

  1. Nach dem Weierstraß'schen Satz vom Maximum stimmt hier die Supremumsnorm mit der Maximumsnorm überein.
  2. Albrecht Pietsch verweist allerdings in seiner History of Banach Spaces and Linear Operators von 2007 nicht auf Pełczyńskis Rolle, sondern auf die Einflussnahme eines Mathematikers namens Wladimir Gurarij (?).
  3. Hier steht die für die jeweilige konstante Funktion, deren jeweilige Bildmenge exakt aus der Zahl besteht.
  4. ist die Operatornorm.