Gattermann-Synthese

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Bei der Gattermann-Synthese handelt es sich um eine Namensreaktion der Organischen Chemie, die zur Herstellung von aromatischen Aldehyden aus Phenolen oder anderen Aromaten verwendet wird. Sie wurde 1906 von dem Goslarer Chemiker Ludwig Gattermann (1860−1920) entdeckt und wird auch als Gattermann-Aldehydsynthese bezeichnet. Diese Variante der Friedel-Crafts-Acylierung kann auch eingesetzt werden, um einzelne Kohlenwasserstoffverbindungen, Heterocyclen wie Furan-, Pyrrol- und Indolderivate sowie Thiophen zu synthetisieren.

Übersichtsreaktion[Bearbeiten]

Bei der Gattermann-Reaktion reagieren Aromaten (außer aromatische Amine und Nitroverbindungen) mit Blausäure und Chlorwasserstoff in Gegenwart des Katalysators Zinkchlorid (ZnCl2) oder Aluminiumchlorid (AlCl3) zu aromatischen Aldehyden.[1]

Übersichtsreaktion

Mechanismus[Bearbeiten]

Die Gattermann-Reaktion ist eine elektrophile aromatische Substitution. [2] Ein möglicher Mechanismus[3][4] soll am Beispiel von Blausäure, Chlorwasserstoff und Benzol gezeigt werden, die zu Benzaldehyd (5) reagieren.Als Katalysator kommt hierbei Zinkchlorid zum Einsatz. Im ersten Schritt greift das freie Elektronenpaar des Stickstoffs das Wasserstoffatom des Chlorwasserstoffs an. Es bildet sich ein Formimidchlorid, das mit dem Katalysator zu dem Komplex 1 reagiert. Durch weitere Zugabe von Zinkchlorid entsteht ein Carbeniumion, das das Elektrophil zur elektrophilen aromatischen Substitution als nächsten Schritt darstellt. Das Carbeniumion und das Benzol gehen eine Wechselwirkung ein, sodass sich ein mesomeriestabilisierter σ-Komplex 2 bildet. Nach der anschließenden Deprotonierung wird die Verbindung 2 rearomatisiert und durch die Zugabe von Chlorwasserstoff zu einem Iminiumsalz 3 umgesetzt. Als nächsten Schritt erfolgt eine Hydrolyse und eine anschließende Protonenwanderung, sodass ein α-Aminoalkohol 4 entsteht. Die Ladung am Stickstoffatom in 4 polarisiert die C-N-Bindung, sodass das Kohlenstoffatom eine positive Teilladung erhält und damit die O-H-Bindung polarisiert. Ein Proton und ein Ammoniak-Molekül werden infolgedessen abgespalten und reagieren zu einem Ammonium-Ion. Als Produkt bleibt das Benzaldehyd (5) zurück.

Mechanismus

Verwendet man mehrwertige Phenole oder Phenolether als Ausgangsstoff, so ist kein Katalysator erforderlich.

Varianten[Bearbeiten]

Gattermann-Adams-Reaktion[Bearbeiten]

Bei der Gattermann-Adams-Reaktion[5] handelt es sich ebenfalls um eine Namensreaktion der Organischen Chemie. Während der Reaktion wird aus Zinkcyanid unter Einwirkung von Chlorwasserstoff die Blausäure freigesetzt und kann wie bei der Gattermann-Reaktion umgesetzt werden. Die Aktivität des dabei entstehenden Zink(II)-chlorids reicht aus, um als Katalysator bei der Umsetzung mit reaktionsfähigeren Phenolen zu wirken. Bei der Reaktion mit trägeren Phenolen muss zusätzlich Aluminiumchlorid als Katalysator zugesetzt werden.

Gattermann-Koch-Reaktion[Bearbeiten]

Die Gattermann-Koch-Synthese gehört auch zu den Namensreaktion der Organischen Chemie, welche nach den deutschen Chemikern Ludwig Gattermann (1860−1920) und dem deutsch-amerikanischen Chemiker Julius Arnold Koch (1864-1956) benannt wurde.[6] Hierbei reagieren Aromaten mit Kohlenmonoxid und Chlorwasserstoff und den Katalysatoren Aluminiumchlorid oder Kupfer(I)-chlorid zu formylierten Aromaten.

Mechanismus[Bearbeiten]

Bei der Gattermann-Koch-Reaktion handelt es sich, wie bei der Gattermann-Synthese, um eine Elektrophile aromatische Substitution. [7] Die Edukte Kohlenmonoxid, Chlorwasserstoff und der Katalysator Aluminiumchlorid reagieren nach einem möglichen Mechanismus[8] zu einem Acylium-Ion 1, welches der Aromat unter Bildung eines Hexadienyl-Kations 2 angreift. Dieses wird durch Deprotonierung rearomatisiert und durch Abspaltung von Aluminiumchlorid entsteht der Benzaldehyd (3).

Mechanismus der Gattermann-Koch-Synthese

Die Gattermann-Koch-Synthese muss unter Ausschluss von Wasser stattfinden. Phenole, Phenolether und Nitrobenzole sind für diese Variante nicht geeignet und gehen dadurch keine Reaktion ein.[1]

Siehe auch[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. a b Siegfried Hauptmann: Organische Chemie, 2. durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, ISBN 3-342-00280-8, S. 355.
  2.  T. Laue, A. PLagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 149–152.
  3.  B. P. Mundy, M. G. Ellert, F. G. Favaloro, Jr.: Name Reactions in Organic Synthesis. 2. Auflage. Wiley & Sons, 2005, ISBN 0-471-22854-0, S. 272–273.
  4.  László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis – Background and Detailed Mechanisms. Elsevier Inc., 2005, ISBN 978-0-12-369483-6, S. 184–185.
  5.  R. Adams, I. Levine: Simplification of the Gattermann Synthesis of Hydroxy Aldehydes. In: J. Am. Chem. Soc.. 45, 1923, S. 2373–2377, doi:10.1021/ja01663a020.
  6. Gattermann, L.; Koch, J. A.: Eine Synthese aromatischer Aldehyde. In: Ber.. 30, 1897, S. 1622. doi:10.1002/cber.18970300288.
  7.  T. Laue, A. PLagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 149–152.
  8.  László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis – Background and Detailed Mechanisms. Elsevier Inc., 2005, ISBN 978-0-12-369483-6, S. 184–185.