McMurry-Reaktion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
QS-Chemie-Logo.svg
Dieser Artikel wurde auf der Qualitätssicherungsseite der Redaktion Chemie eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Chemie formal und inhaltlich auf ein in der Wikipedia gewünschtes Niveau zu bringen. Wir sind dankbar für Deine Mithilfe, bitte beteilige Dich an der Diskussion (neuer Eintrag) oder überarbeite den Artikel entsprechend.

Die McMurry-Reaktion ist eine Namensreaktion und nach dem Entdecker John E. McMurry benannt. Hierbei werden zwei Ketone oder Aldehyde zu einem Alken in Gegenwart eines Titanchlorids, wie z. B. Titan(III)-chlorid, und eines Reduktionsmittels gekoppelt.[1] Die McMurry-Reaktion dient hauptsächlich zur Herstellung symmetrischer Alkene und stellt besonders für die Synthese sterisch anspruchsvoll substituierter Alkene ein wichtiges Verfahren dar und kann als Rückreaktion der Ozonolyse bezeichnet werden.

Reaktion[Bearbeiten]

Reaktionsschema der McMurry-Reaktion

Aliphatische sowie aromatische Aldehyde oder Ketone (auch cyclische Ketone) lassen sich in hohen Ausbeuten zu symmetrischen Alkenen reduktiv dimerisieren.[1][2] Hierbei dient niedervalentes Titan als Reduktionsmittel, das durch Reduktion von Titan(III)-chlorid (TiCl3) oder Titan(IV)-chlorid (TiCl4) mit z. B. Lithiumaluminiumhydrid (LiAlH4) bzw. Zink oder Magnesium erhalten wird.

Reaktionsmechanismus[Bearbeiten]

Der Reaktionsmechanismus der McMurry-Reaktion verläuft je nach verwendetem Reduktionsmittel unterschiedlich und nicht zwingend über metallisches Titan(0) als niedervalente Titanverbindung, wie lange Zeit vermutet wurde.[3][4] So konnte z. B. gezeigt werden, dass bei Verwendung von Lithiumaluminiumhydrid (LiAlH4) als Reduktionsmittel ein Hydridtitanchlorid [HTiCl(THF)0.5]x als reaktive Titanspezies gebildet wird.[5][4]

Bei der heute wegen ihrer hohen Ausbeuten häufig verwendeten Variante mit Zink als Reduktionsmittel konnte hingegen gezeigt werden, dass die Reduktion von Titan(III)-chlorid (TiCl3) (oder Titan(IV)-chlorid TiCl4) erst nach Bildung eines Titan(III)-Carbonylkomplexes stattfindet und zur Bildung eines Titan(II)-Carbonylkomplexes führt.[5] In einem ersten Schritt erfolgt dann eine Pinakolatbildung, im zweiten Schritt die Desoxygenierung des Pinakolates zum Alken. Bei aromatischen Aldehyden und Ketonen verläuft die Pinakolatbildung über eine carbenoide Zwischenstufe, während bei aliphatischen Aldehyden und Ketonen die Pinakolatbildung über eine radikalische Zwischenstufe verläuft.

Mechanismus der McMurry-Reaktion

Unsymmetrisch substituierte Alkene aus Gemischen zweier unterschiedlicher Ketone sind mit der Mc-Murry-Reaktion nur in unbefriedigenden Ausbeuten zugänglich, wenn eine der Komponenten im Überschuss vorliegt.

Wenn die Reaktanten nicht erwärmt und die Reaktionszeit kurz gehalten wird, ist es möglich, dass nur der erste Reaktionsschritt erfolgt. Es werden nur 1,2-Diole als Reaktionsprodukte erhalten. In diesem Fall handelt es sich um eine einfache Pinakol-Kupplung unter McMurry-Bedingungen. Ein Beispiel für die Reaktion unter diesen Bedingungen ist die Taxol-Synthese nach Nicolaou.

Beispiele[Bearbeiten]

Die Originalpublikation beschreibt die Kupplung von Retinal zum Carotin mit Titan(III)-chlorid / Lithiumaluminiumhydrid. Ähnlich wird Tetraphenylethylen aus Benzophenon synthetisiert. Andere Produkte, die in der Originalpublikation beschrieben werden, sind Adamantanon und Civeton. Eine Anwendung der McMurry-Reaktion mit Titan(IV)-chlorid und Zink beschäftigt sich mit der Synthese eines Nanomotors.[6]

Beispiel einer McMurry-Reaktion

Einzelnachweise[Bearbeiten]

  1. a b John E. McMurry und Michael P. Fleming: New method for the reductive coupling of carbonyls to olefins. Synthesis of β-carotene. Journal of the American Chemical Society. Band 96, 1974, S. 4708–4709. doi:10.1021/ja00821a076
  2. Jerry March: Advanced Organic Chemistry. 4. Auflage, Wiley-Interscience. ISBN 0-471-60180-2
  3. Michel Ephritikhine: A new look at the McMurry reaction. In: Chem. Commun. 1998, S. 2549–2554, ISSN 1359-7345. doi:10.1039/a804394i
  4. a b Alois Fürstner und Borislav Bogdanovic: Neue Entwicklungen in der Chemie von niedervalentem Titan. In: Angewandte Chemie, Band 108, 1996, S. 2583-2609. doi:10.1002/ange.19961082104
  5. a b Borislav Bogdanovic und Andreas Bolte: A comparative study of the McMurry reaction utilizing [HTiCl(THF)0.5)]x, TiCl3(DME)1.5-Zn(Cu) and TiCl2*LiCl as coupling reagents. In: J. Organomet. Chem. Band 502, 1995, S. 109-121, ISSN 0022-328X. doi:10.1016/0022-328X(95)05755-E
  6. Matthijs K. J. ter Wiel, Richard A. van Delden, Auke Meetsma, and Ben L. Feringa: Light-Driven Molecular Motors: Stepwise Thermal Helix Inversion during Unidirectional Rotation of Sterically Overcrowded Biphenanthrylidenes. In: J. Am. Chem. Soc.. 127, Nr. 41, 2005, S. 14208. doi:10.1021/ja052201e.

Weblinks[Bearbeiten]