Polyakov-Wirkung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Polyakov-Wirkung (engl. Polyakov action) ist die zweidimensionale Wirkung einer konformen Feldtheorie, welche die Weltfläche eines Strings beschreibt. Benannt ist sie nach Alexander Markowitsch Poljakow.

Formulierung[Bearbeiten]

Parametrisierung der Weltfläche eines offenen Strings durch σ und τ,
X0 und X sind die Target-Raum Zeit- und Raumkoordinaten.

Die Polyakov-Wirkung hat die folgende Form

S = {T \over 2}\int_\Sigma d \sigma d \tau  \sqrt{-|\gamma|} \gamma^{ab} g_{\mu \nu} \partial_a X^\mu (\sigma,\tau) \partial_b X^\nu(\sigma,\tau).

Die Symbole dieser Gleichung haben folgende Bedeutung:

  • \Sigma ist die zweidimensionale Weltfläche des Strings.
  • T ist die String-Spannung, die angibt wie groß die Tendenz des Strings ist zu schwingen, analog zu einem Gummiband, das ebenfalls eine gewisse innere Spannung besitzt. Dieser Parameter ist ein freier Parameter der Theorie und bestimmt z.B. die Masse der angeregten Zustände in einer quantisierten Theorie. Anstelle von T wird häufig auch der sogenannte Regge-Slope-Parameter \alpha'=(2\pi T)^{-1} benutzt, dies hat historische Gründe.
  • \gamma^{ab} ist eine unabhängige Metrik auf der Weltfläche (die Indizes nehmen die Werte 0 und 1 an), welche allerdings nur als Hilfsgröße eingeführt wird, da sie kein dynamisches Feld darstellt und durch Ausnutzen der Bewegungsgleichungen eliminiert werden kann (dies führt zur Nambu-Goto-Wirkung).
  • |\gamma| ist die Determinante von \gamma_{ab}. Die Signatur der Metrik ist so gewählt, dass zeitartige Richtungen positives und raumartige Richtungen negatives Vorzeichen haben. Die raumartige Weltflächen-Koordinate wird mit σ bezeichnet, die zeitartige dagegen mit τ.
  • g_{\mu \nu} ist die Metrik des Target-Raums (die Raumzeit), wobei die Indizes von 0 bis D-1 laufen, wenn D die Dimension des Target-Raums ist.
  • Die Target-Raum-Koordinaten sind durch X^\mu gegeben, sie stellen Abbildungen von der zweidimensionalen Weltfläche in das Tangentialbündel des Target-Raumes dar, also X: \Sigma \to T(M).

Symmetrien[Bearbeiten]

Die Wirkung ist invariant unter den folgenden Symmetrietransformationen:

Die Weyl-Symmetrie ist dabei charakteristisch für eine zweidimensionale Theorie – betrachtet man die Wirkung höherdimensionaler Objekte, so stellt man fest, dass eine Wirkung proportional zu ihrem Weltvolumen zusätzliche Terme enthält, welche die Weyl-Symmetrie brechen.

Äquivalenz zur Nambu-Goto-Wirkung[Bearbeiten]

Um die Äquivalenz der Polyakov-Wirkung zur Nambu-Goto-Wirkung zu zeigen, genügt es die Bewegungsgleichungen für h_{ab} auszunutzen:

{\delta S \over \delta \gamma^{ab}}=0 \quad\to\quad h_{ab}={1\over 2}\gamma_{ab}\gamma^{cd}h_{cd},

wobei wir \quad\quad h_{ab}=\partial_aX^\mu\partial_bX_\mu, die induzierte Metrik auf der Weltfläche eingeführt haben. Dies kann man benutzen, um \gamma aus der Wirkung zu elimieren und man erhält exakt die Nambu-Goto-Wirkung

S_{NG}=T\int_\Sigma d \sigma d \tau \sqrt{-|h|}.