Rot-Grün-Sehschwäche

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Klassifikation nach ICD-10
H53.5 Farbsinnstörungen - Rot-Grün-Schwäche
ICD-10 online (WHO-Version 2013)
Ishihara-Farbtafel: Rot-Grün-Sehschwache sehen hier ausschließlich eine 17, Normalsichtige erkennen auch eine 47
Auflösung für Betroffene: Rot-Grün-Sehschwache sehen die hier blau markierten Felder im Originalbild in derselben Farbe wie den Hintergrund, Normalsichtige können hingegen den Farbunterschied erkennen

Die Begriffe Rot-Grün-Sehschwäche und Rot-Grün-Blindheit stehen für bestimmte Farbfehlsichtigkeiten, die umgangssprachlich auch als Farbenblindheit bezeichnet werden. Die Betroffenen können hierbei die Farben Rot und Grün schlechter als Normalsichtige unterscheiden, wobei eine Grünschwäche deutlich häufiger auftritt als eine Rotschwäche. Zudem sind signifikant mehr Männer als Frauen betroffen. Die medizinischen Fachbegriffe hierfür lauten Deuteranomalie bzw. Deuteranopie für Grünschwäche bzw. Grünblindheit, sowie Protanomalie und Protanopie für die entsprechende Rotstörung.[1][2]

Ursachen[Bearbeiten]

Hervorgerufen wird die X-chromosomal rezessiv bedingte Sehschwäche durch Veränderungen der Aminosäuresequenz in den Sehpigment-Proteinen (Opsin) der entsprechenden Zapfen der Netzhaut, die aus der Veränderung der Gensequenz des entsprechenden Opsins resultiert.

Es existieren bei jedem Menschen jeweils ein Gen für das rotempfindliche Opsin und drei identische Gene für das grünempfindliche Opsin. Alle liegen nahe beieinander auf dem X-Chromosom. Durch Fehler beim Crossing-over kommt es zu falschen Genkombinationen, vor allem zu Kombinationen, die sich phänotypisch durch verschobene Absorptions-Empfindlichkeitsmaxima in den entsprechenden Zapfen-Typen äußern, meist bei den Grün-Rezeptoren, da sich diese direkt an einer Crossing-over-Stelle des X-Chromosoms befinden.

Fehlt das Gen für eines dieser Opsine, spricht man von einer Rot- oder Grünblindheit (Protanopie oder Deuteranopie).

Rot-Grün-Sehschwäche oder -Blindheit ist immer angeboren und verstärkt oder vermindert sich nicht im Laufe der Zeit. Von ihr sind etwa 9 % aller Männer und etwa 0,8 % der Frauen betroffen, sie ist damit deutlich häufiger als eine Gelb-Blau-Sehschwäche oder die vollständige Farbenblindheit.

Protanopie ist der Fachausdruck für Rot-Blindheit (Rot-Zapfen fehlt), Protanomalie für Rotsehschwäche (Rot-Zapfen degeneriert), Deuteranopie für Grün-Blindheit (Grün-Zapfen fehlt), Deuteranomalie für Grünschwäche, die häufigste Art der umgangssprachlich genannten Farbenblindheit. Blauzapfenmonochromasie stellt einen Sonderfall der Rot-Grün-Blindheit dar, hier fehlen Rot- und Grünzapfen völlig, nur der Blauzapfen ist vorhanden.

Weitergabe der Rot/Grün-Sehschwäche oder -Blindheit[Bearbeiten]

Wie bereits erwähnt wird diese Sehschwäche genetisch weitergegeben. Grund für das bei Männern gegenüber Frauen ungefähr zehnmal so häufige Auftreten ist, dass die Fähigkeit zum Unterscheiden dieser Farben durch das 23. Chromosom, das X-Chromosom, weitergegeben wird und dass es sich bei dem Defekt um ein rezessives Merkmal handelt. Chromosomen liegen bei Menschen stets paarweise vor, und wenn ein Merkmal auf beiden Chromosomen unterschiedlich ausgeprägt ist, so überdeckt das dominante Merkmal das rezessive, das sich somit phänotypisch nicht bemerkbar macht (X-chromosomaler Erbgang).

Das 23. Chromosom entscheidet beim Menschen auch über das Geschlecht. Regulär besitzen Frauen zwei X-Chromosomen, Männer dagegen nur ein X-Chromosom. Das zweite 23. Chromosom wird Y-Chromosom genannt. (X und Y bezieht sich nicht auf die Form der Chromosomen.) Hat also eine Frau ein X-Chromosom, das die Erbinformation, die das Unterscheiden der Farben ermöglicht, nicht enthält, so wird ihr durch das zweite X-Chromosom diese Fähigkeit trotzdem ermöglicht, da es den Defekt überdeckt. Damit eine Frau unter der Rot-Grün-Farbschwäche leidet, müssen beide X-Chromosomen den Defekt aufweisen. Beim Mann ist jedoch kein zweites X-Chromosom vorhanden, das den Defekt kompensieren könnte.

Durch die Verbindung mit dem das Geschlecht bestimmenden X- bzw. Y-Chromosom ergibt sich eine fast einzigartige Möglichkeit, die Weitergabe des Defekts bzw. die Weitergabe von Merkmalen von Eltern an ihre Kinder im Allgemeinen sichtbar zu machen. Vater und Mutter geben jeweils eines von beiden Chromosomenpaaren an ihr Kind weiter. Da das 23. Chromosom geschlechtsbestimmend ist, entscheidet der Vater über das Geschlecht des Kindes. Gibt er sein Y-Chromosom weiter, wird das Kind männlich, da es ja von der Mutter ein X-Chromosom bekommt. Gibt der Vater das X-Chromosom weiter, erhält das Kind zwei X-Chromosomen und wird damit weiblich. Dadurch ergeben sich folgende Regeln, die immer eintreten (von Mutationen einmal abgesehen, die aber sehr unwahrscheinlich sind):

  • Haben weder Vater noch Mutter die Rot-Grün-Sehschwäche, kann sich der Gendefekt schlimmstenfalls in einem der beiden mütterlichen X-Chromosomen „verstecken“. Folglich wird in dieser Konstellation keine der Töchter von der Sehschwäche betroffen sein, Söhne jedoch, wenn sie dasjenige der beiden mütterlichen X-Chromosomen mit „verstecktem“ Defekt „abbekommen“.
  • Hat der Vater die Rot-Grün-Sehschwäche, die Mutter hingegen zwei X-Chromosomen ohne den Defekt, wird kein Kind an der Sehschwäche leiden. Alle Töchter haben jedoch ein „verstecktes“ X-Chromosom mit Defekt, was ein 50-prozentiges Risiko für männliche Enkel zur Folge hat.
  • Ist die Mutter von der Sehschwäche betroffen, sind beide X-Chromosomen mit dem Defekt versehen. Folglich haben alle Söhne den Defekt und alle Töchter sind zumindest Träger des Merkmals. Ob die Sehschwäche bei ihnen auch auftritt, hängt davon ab, ob der Vater ebenfalls davon betroffen ist.

Rot-Grün-Sehschwäche im Alltag[Bearbeiten]

Die Sehschwäche wird von den Betroffenen im Allgemeinen als nicht besonders hinderlich angesehen. Zahllose Experimente zum Beispiel mit musterinduzierten Flimmerfarben sprechen ferner dafür, dass Farbfehlsichtige – von der geringeren Farbunterscheidungsfähigkeit in den Bereichen ihrer Störung abgesehen – wohl den gleichen ästhetischen Eindruck von Farben (Farbkreis, Farbästhetik) entwickeln wie normalsichtige Personen (vergl. hierzu auch Tetrachromaten). Allerdings dürfen einige Berufe wie Lokomotivführer, Bus- und Taxifahrer, Pilot oder Polizist nur nach dem erfolgreichen Bestehen umfangreicher und besonderer augenärztlicher Untersuchungen ausgeübt werden. Ähnliches gilt für manche Luft- oder Wassersportarten aufgrund der Bedeutung der Farben rot und grün zur Unterscheidung von Backbord und Steuerbord. Die Angewohnheit von Spieleherstellern, häufig die Farben rot und grün für Spielsteine zu verwenden, macht die Unterscheidung für Betroffene schwerer.

Von Rot-Grün-Sehschwachen oft besser wahrzunehmen sind Helligkeitsabstufungen gegenüber Farbvariationen

Bei Publikationen, insbesondere im gegenüber den Printmedien farbreicher gestalteten Web (siehe auch barrierefreies Internet), wird diese Hürde oft nicht bedacht. Ein in einem Text mit schwarzen Buchstaben hervorgehobenes rotes (oft dunkelrotes) Wort wird von den Betroffenen nicht als Hervorhebung erkannt. Eine Hervorhebung in blau dagegen ist meistens gut zu erkennen. Thematische Karten, die mit unterschiedlichen Farbnuancen arbeiten, sind für Menschen mit Rot-Grün-Sehschwäche oft nur schwer lesbar, dagegen werden von ihnen oft mehr unterschiedliche Schattierungen einer Farbe leichter wahrgenommen.

Da im Alltag auch viele Mischfarben existieren, treten oft auch bei der Unterscheidung von Farben, die auf den ersten Blick kein rot oder grün enthalten, Probleme auf. So zum Beispiel bei Blautönen, denen grün oder rot beigemischt ist.

Es kann auch zu Problemen beim Autofahren in der Nacht kommen. Dies liegt daran, dass sich in der Nacht die farbigen Ampeln für Personen mit einer starken Rotschwäche nur auf kurze Distanzen problemlos erkennen lassen. Personen mit Grünschwäche können zum Teil weiter entfernte Ampeln nur schlecht von Straßenlampen und -reklamen unterscheiden.

Studien[3] haben belegt, dass Farbfehlsichtige eine größere Anzahl von Khakitönen unterscheiden können als Normalsichtige. Dieses Phänomen wird beim Militär genutzt, da Farbfehlsichtige sich nicht so leicht von Tarnfarben täuschen lassen und daher einen etwa getarnten Soldaten im Wald leichter erspähen als Normalsichtige. Dies liegt zum einen am oben genannten Phänomen, zum anderen daran, dass Farbfehlsichtige im Laufe ihres Lebens gelernt haben, sich stärker auf Formen und Konturen zu konzentrieren statt auf Farben wie Normalsichtige.

Es wird auch vermutet, dass neben einer Fehlfunktion der Zapfen auch deren Anzahl auf der Netzhaut geringer ist. Dadurch würden Farbfehlsichtige mehr die für das Dämmerungssehen zuständige Stäbchen besitzen, was erklären würde, warum Farbfehlsichtige ein besseres skotopisches Sehen aufweisen als Normalsichtige.

Untersuchungsmethoden[Bearbeiten]

Die Ausprägung einer Rot-Grün-Sehschwäche kann mit Farbtafeln (beispielsweise den hier gezeigten Ishihara-Farbtafeln), etwas genauer durch den so genannten Farnsworth-Test oder mit einem Anomaloskop festgestellt werden. Als weitere Testmethode ist der sogenannte Lantern-Test anerkannt, für den es wiederum drei unterschiedliche Testgeräte gibt (Holmes-Wright Lantern, Beyne Lantern und Spectrolux Lantern).

Simulation der Rot-Grün-Sehschwäche für Trichromaten[Bearbeiten]

Die Rot-Grün-Sehschwäche lässt sich für Farbsichtige simulieren, indem der rote und grüne Farbkanal eines digitalen Bildes zu einem gelben Kanal zusammengefasst werden, bei dem rot und grün die gleiche Helligkeit aufweisen. In der folgenden Übersicht sind einige Beispiele hierfür und zur Simulation der Achromasie, bei der gar keine Farben erkannt werden können, die entsprechenden Graustufenbilder hinzugefügt.

Motiv Trichromatisches Bild Dichromatisches Bild
ohne Rot-Grün-Unterscheidung
Achromatisches Bild
in Graustufen
Pseudoisochromatische Farbtafel TC47-rg12.png RG47-rg12.png BW47-rg12.png
Obststand TCFruits.jpg RGFruits.jpg BWFruits.jpg
Mosaikfenster TCMosaic.Window.jpg RGMosaic.Window.jpg BWMosaic.Window.jpg
Regenbogen TCRainbow.jpg RGRainbow.jpg BWRainbow.jpg

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Th. Axenfeld (Begr.), H. Pau (Hrsg.): Lehrbuch und Atlas der Augenheilkunde. Unter Mitarbeit von R. Sachsenweger u. a., Stuttgart: Gustav Fischer Verlag, 1980, ISBN 3-437-00255-4
  2. Fritz Hollwich und Bärbel Verbeck: Augenheilkunde für Krankenpflegeberufe. Georg Thieme Verlag 1980, 2. Auflage, ISBN 3-13-500402-3
  3. Multidimensional scaling reveals a color dimension unique to 'color-deficient' observers. - Bosten, Robinson, Jordan & Mollen, 2005

Literatur[Bearbeiten]

  • Franz Grehn: Augenheilkunde. Berlin: Springer Verlag, 30. Auflage, 2008, ISBN 978-3-540-75264-6
  • Wolfgang Hammerstein und Walter Lisch: Ophthalmologische Genetik. Enke Verlag, Stuttgart, 1985. ISBN 3-432-94941-3
  • Rudolf Sachsenweger: Neuroophthalmologie. Thieme Verlag, Stuttgart; 3. Auflage, (Januar 1983) ISBN 978-3-13-531003-9
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!