Spermium

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 22. September 2016 um 07:57 Uhr durch Hahnenkleer (Diskussion | Beiträge) (Änderungen von 91.42.237.19 (Diskussion) auf die letzte Version von Georg Hügler zurückgesetzt). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Spermium und Eizelle

Ein Spermium oder Spermatozoon oder Spermatozoid (umgangssprachlich auch Samenfaden oder Samenzelle genannt) ist eine Form von Gameten (Keimzellen), nämlich eine zu eigenständiger Bewegung fähige männliche Keimzelle, die der Befruchtung der weiblichen Keimzelle, der Eizelle, dient. Spermien werden von einem Individuum meistens in großer Zahl produziert und sind wesentlich kleiner als die zu befruchtende Eizelle, weil sie im Gegensatz zur Eizelle keine größeren Plasmamengen und dotterhaltigen Nährstoffe enthalten.

Männliche Keimzellen, die nicht zu eigenständiger Bewegung fähig sind, werden als Spermatien (Singular Spermatium) bezeichnet.

Zu unterscheiden sind die Begriffe Spermium und Sperma. Sperma besteht aus der Samenflüssigkeit (dem Samenplasma) mit den darin enthaltenen Spermien und etlichen Epithelzellen der Hodenkanälchen.

Spermien mit Geißeln

Von links: Kopfteil mit Zellkern, bedeckt von Akrosom und Zellmembran – Hals mit Mitochondrien – Geißel (Flagellum)

Beim menschlichen Spermium handelt es sich um eine begeißelte Zelle, die einen Kopfteil mit haploidem Chromosomensatz in einem Zellkern, ein Mittelstück („Hals“ mit Zentrosom und darumliegenden Mitochondrien-Paketen) sowie eine Geißel (auch als „Schwanz“ bezeichnet) besitzt. An der der Geißel gegenüberliegenden Seite des Kopfes, beim Schwimmen die Vorderseite, befindet sich der Kopf, der für das Eindringen in die Eizelle zuständig ist. An der Vorderseite des Spermienkopfs ist die Kopfkappe (Akrosom), die mit Enzymen gefüllt ist, die das Durchdringen der Ei-Membran erleichtern.

Besondere Spermienformen

Bei niederen Krebsen und etlichen Spinnentieren können die Spermien insgesamt kugelförmig sein. Der Spulwurm besitzt nagelförmige Spermien mit einem Glanzkörper aus spezifischen Eiweißen. Andere Rundwürmer und auch Milben haben amöboid bewegliche Spermien. Bei den Zehnfußkrebsen (Decapoda) kommt eine Art „Explosionseinrichtung“ in Form eines Sprungfedermechanismus vor, der das Spermium in die Eizelle katapultiert.

Größen

Die Größe der Spermien variiert bei den einzelnen Arten stark. Während die Riesenspermien von Ostrakoden (Muschelkrebse) 7 mm lang sind und damit bis zu zehn Mal so lang wie die Muschelkrebse selbst werden können,[1] besitzen menschliche Spermien nur eine Länge von etwa 60 µm: der Kopfteil ist hierbei etwa 5 µm lang und 3 µm breit, während die Geißel einschließlich „Hals“ rund 50 µm lang ist. Die Größe der Spermien kann sogar innerhalb der gleichen Art variieren, je nachdem, ob ein Männchen mehrere Nebenbuhler hat oder nicht. So hat man bei Fröschen festgestellt, dass die Spermiengröße und damit auch die Länge der Geißel zunimmt, wenn das betreffende Männchen sich mit anderen Männchen um die Befruchtung der Eier eines Froschweibchens auseinanderzusetzen hat. Die Spermien mit der längsten Geißel, die am schnellsten schwimmen können, haben dabei die größte Chance, als erste die vom Weibchen ins Wasser abgegebenen Froscheier zu erreichen.

Nicht nur bei Süßwasser-Muschelkrebsen, sondern auch bei einigen anderen Arten im Tierreich gibt es Riesenspermien. Diese sind teilweise um ein Vielfaches länger als ihr Produzent. Sie kommen bei einigen Arten von Würmern, Schmetterlingen und Wasserwanzen vor. Den Größenrekord hält dabei die Taufliege Drosophila bifurca. Ihre Samenzellen messen mit bis zu 58 Millimetern Länge mehr als das Zehnfache ihrer Körperlänge.[2]

Menschliche Spermien können mit einem gewöhnlichen Lichtmikroskop bereits bei einer 100, besser aber 400fachen Vergrößerung ohne Einfärbung beobachtet werden.

Bildung

Bei Wirbeltieren werden Spermien im Epithel der Hodenkanälchen des Hodens produziert. Siehe Spermatogenese.

Menschliche Spermien

Phasenweise Darstellung des Eindringens des Spermiums in eine Eizelle

Entdeckung

Spermatozoen wurden im Jahr 1677 mikroskopisch vom Medizinstudenten Johan Ham entdeckt, sein Lehrer Antoni van Leeuwenhoek machte weiterführende Untersuchungen.[3][4] Leeuwenhoek benannte die neu entdeckten „Partikel“ Animalcula, also Samentierchen und ordnete sie den Infusorien zu, er erkannte bereits richtig, dass sie im Hoden gebildet werden müssen. Seiner Vorstellung nach handelte es sich aber um etwas wie Menschen-Larven. Der gesamte Mensch wäre demnach im Spermium als „Homunculus“ bereits vorgebildet und müsse nur noch heranwachsen, er bestritt jede Bedeutung der Mutter und der mütterlichen Eizellen. In der Forschung der folgenden Jahrhunderte tobte ein erbitterter Streit zwischen den „Ovisten“, die den Keim des künftigen Menschen im Ei, und den „Animalculisten“, die ihn im Spermium lokalisierten. Beide glaubten an eine Präformation des Menschen in dem jeweiligen Keim, möglicherweise sogar immer kleiner eingeschachtelt, und so auf die ersten Menschen Adam, oder Eva, zurückgehend.[5]

Den Ausdruck "Spermatozoon" (griechisch für Samentier, Samenlebewesen) verwendete erstmals 1826 der Embryologe Karl Ernst von Baer, der die fertile Funktion dieser "Lebewesen im Sperma" damals zu recht für unbewiesen hielt.[6]

1842 veröffentlichte der Schweizer Biologe Albert von Kölliker seine Untersuchungen an Spermien in dem Werk Untersuchungen über die Bedeutung der Samenfäden.

Dass Spermien in das Ovum eindringen, wurde mikroskopisch erstmals 1843 von Martin Barry beobachtet und berichtet.[7]

Bau und Funktion

Das Spermium des Mannes besteht aus

  • einem Kopfteil, der den haploiden Chromosomensatz und zwischen 2682 und 2886 verschiedene mRNA-Moleküle im Zellkern enthält,
  • einem Mittelstück mit einer Vielzahl von Mitochondrien, die die Energie in Form von ATP-Molekülen für die Fortbewegung liefern,
  • einem beweglichen Schwanzteil mit längsverlaufendem Fibrillensystem aus Mikrotubuli zur Fortbewegung.

Menschliche Spermien dienen – wie die Spermatozoen der anderen Organismen – der Befruchtung einer weiblichen Eizelle. Sie werden nach ihrer Fertigstellung (Spermatogenese) zunächst im männlichen Nebenhoden gelagert, um von dort aus über den Samenleiter und die Harnröhre bei der Ejakulation während des männlichen Orgasmus ausgestoßen zu werden. Rund 300 Millionen von ihnen landen in der weiblichen Scheide. Von der Scheide aus gelangt nur ein kleiner Teil der Spermien, die zur Befruchtung vorgesehen sind, über den Eileiter zur Eizelle, dem weitaus größeren Teil gelingt der hindernisreiche Weg bis in diese Region nicht, oder aber er ist für andere Funktionen vorgesehen (vergl. Spermienkonkurrenz).

Auf dem Weg zur Eizelle werden die Spermien wahrscheinlich chemotaktisch von Progesteron oder duftähnlichen Substanzen, dem pH-Wert und Temperaturunterschieden geleitet.[8] Aufgenommen werden die Reize einerseits von Molekülen der großen Familie der G-Protein-gekoppelten Rezeptoren in der Membran des Anfangsteils des Spermienschwanzes, die z.T. mit denen in den Riechzellen unserer Nase identisch sind (Geruchsrezeptoren), andererseits durch den CatSper-Ionenkanal, der auch durch viele niedermolekulare Substanzen aktiviert werden kann.[9] Experimentell konnte gezeigt werden: Bindet der Duftstoff Bourgeonal[10] (Maiglöckchenduft) an den OR1D2, steigt im Innern des Spermiums die Calcium-Konzentration. Gleiches gilt nach aktuellen Erkenntnissen für eine Bindung und Aktivierung des CatSper-Kanals.[11] Dies hat zur Folge, dass das Spermium seine Schwimmrichtung ändert und gleichzeitig die Schwimmgeschwindigkeit verdoppelt.[12] Dabei sind insbesondere die Veränderungen der Calcium-Konzentrationen, nicht deren absolute Höhe, für die Richtung der Fortbewegung verantwortlich.[13][14] Es ist jedoch höchst unwahrscheinlich, dass der natürliche Bindungspartner des Bourgeonal-Rezeptors der einzige „Wegweiser“ zur Eizelle ist; eher ist von mehreren Faktoren auszugehen.[15]

Wegen der vielen Hindernisse erreichen unter Normalbedingungen nur etwa 300 Spermien diejenige Stelle am Ende des Eileiters, an der die Eizelle auf ihre Befruchtung wartet. Die Eizelle lässt sich allerdings nur von einem einzigen Spermium befruchten. Bei der Befruchtung dringt der Inhalt des Spermienkopfes in die Eizelle ein, die dadurch diploid wird und nun Zygote heißt. Nach neueren Erkenntnissen beeinflussen die zusammen mit dem Zellkern des Spermiums in die Eizelle eingedrungenen männlichen mRNA-Moleküle die Entwicklung des aus der Zygote entstehenden Embryos.

Fortbewegung

Darstellung der Kräfte, die bei der rhythmischen Fortbewegung eines Spermiums wirken.

Die menschlichen Spermien besitzen eine bewegliche Geißel. Die beiden auf der Geißel markierten Punkte bewegen sich nach oben (linker Punkt) und unten (rechter Punkt). Diese Geschwindigkeit wird aufgeteilt in den Teil, der parallel (V[par]) zum Abschnitt der Geißel verläuft, und den Teil, der senkrecht (V[senkr]) dazu verläuft. Die daraus resultierende Kraft F wird wiederum in zwei Teile aufgeteilt, nämlich den Teil der Kraft, der parallel zur Bewegungsrichtung des Spermiums wirkt (F[horiz]), und den Teil, der vertikal zur Bewegungsrichtung wirkt (F[vert]). Die Summe der beiden Kräfte, die parallel zur Bewegungsrichtung des Spermiums gerichtet sind, bilden die vorantreibende Kraft.[16]

Lebensdauer

Nach einer Reifungsdauer von etwa 10 Wochen von der Spermatogonie zur Spermatozoe[17] (ausgereiftes Spermium) kann ein Spermium bis zu einem Monat im Spermadepot des Mannes überdauern. An der Luft können Spermien je nach Umweltbedingungen (Licht, Temperatur, Feuchtigkeit) bis zu 24 Stunden überleben. Sobald das Ejakulat mit den Spermien trocknet, sterben diese ab. Es kann also keine Befruchtung mittels eingetrocknetem Sperma stattfinden.[18]

Durch den Ausgleich der pH-Werte von Vagina (pH 4–5) und Zervixschleim und Sperma (pH 6–8) ist es den Spermien möglich, in dem an sich »feindlichen« Milieu zu überleben. Unter optimalen Bedingungen in den Buchten der Zervixschleimhaut können Spermien dort bis zu sieben Tage überleben. Von den durchschnittlich 250 Millionen Spermien pro Samenerguss erreichen nur ca. 500–800 die Eileiter. Ein Grund hierfür ist der Zervixschleim, durch den die nicht schwimmfähigen Spermien gefiltert werden.[19]

Eine Abweichung vom optimalen, leicht basischen pH-Wert (7,2–7,8)[20] führt zum Absterben der Spermien. Die meisten in mechanischen und chemischen Empfängnisverhütungsmethoden verwendeten Spermizide arbeiten auf dieser Basis. Die im Genitalbereich häufig verwendeten pH-neutralen Pflegeprodukte sind nicht spermizid und für eine empfängnisverhütende Nachsorge ungeeignet.

Verwendung der Bezeichnung „Samen“

Spermien und Sperma werden oft als Samen bezeichnet. Dies kann in die Irre führen, denn ein Same ist ein (oft in Fruchtfleisch eingebettetes) Verbreitungsorgan der höheren Pflanzen, das aus einem ruhenden pflanzlichen Embryo besteht, der von Nährgewebe und einer Samenschale umgeben ist.

Die Verwendung der Bezeichnung Same oder Samen für die Spermien leitet sich aus der Bibel ab, wobei sie dort nicht den Anspruch erhebt, wissenschaftlich korrekt zu sein, sondern eher verwandtschaftliche Abstammung betonen will, und dies auf eine für damalige Verhältnisse verständliche Weise. Das hebräische Wort für Same (זרע zera) wird dort unterschiedslos für Pflanzen, Tiere und den Menschen gebraucht. So empfängt einerseits die Frau den männlichen Samen (Num 5, 28) oder erweckt ihn beim erotischen Spiel (Gen 19, 32 und 34), andererseits wird das Land mit den Samen der Feldfrüchte besät (Dtn 29, 22; Ez 36, 9).

Zudem beschränkte sich in antiken und mittelalterlichen Vorstellungen das Vorhandensein eines „Samens“ als Keimzelle nicht nur auf das männliche Geschlecht.[21]

Aus dem alten Ägypten stammt die falsche Vorstellung, dass der männliche Same bereits der Mensch in nuce sei, der im Mutterleib quasi wie in einer Nährlösung nur noch heranzureifen braucht. Schließlich steht der Begriff Same auch für die Nachkommenschaft selbst. Wenn die Bibel vom Samen Abrahams spricht, dann sind damit die aus Abraham hervorgegangenen Nachkommen gemeint (Jes 41, 8; Jer 33, 26). All diese Bedeutungen sind hier nicht gemeint. Neuere Schulbücher sprechen daher auch nicht mehr vom Samenleiter, sondern ausdrücklich vom Spermienleiter.

Tatsächlich bedeutet bereits das griechische Wort σπερμα (Sperma) nichts anderes als „Samen“.[22] Das findet sich auch in botanischen Bezeichnungen wie Angiospermen für „Bedecktsamer“ wieder. Die Mehrdeutigkeit besteht also in mehreren Sprachen.

Weitere Wortbildungen

  • Spermatophore (Samenpakete) dienen bei manchen Tierarten der Spermienübertragung.
  • Ein Spermiogramm wird durch Analyse des Ejakulats erstellt und dient der Beurteilung der Zeugungsfähigkeit des Mannes.

Literatur

Populärwissenschaftliche Bücher

  • Britta Hähnel: ReproTier-Kompetenzverbund präsentiert: Die kleine Spermienfibel: Größenmessung an Spermien verschiedener Tierarten. durchgeführt und dokumentiert im Institut für Fortpflanzung landwirtschaftlicher Nutztiere Schönow e.V., Mensch & Buch, Hähnel 2007, ISBN 978-3-86664-186-0.
  • Robie H. Harris: Was jetzt kommt ist … einfach irre! Ein Buch über Eier und Spermien, Geburt, Babys und Zusammenleben. Beltz & Gelberg, Weinheim 2002. ISBN 3-407-75319-5.
  • Vivien Marx: Das Samenbuch, alles über Spermien, Sex und Fruchtbarkeit. Fischer-Taschenbuch 14140, Frankfurt am Main 1999. ISBN 3-596-14140-0.

Spezielle Wissenschaftliche Literatur

  • 1938: Walther Schönfeld: Um die Entdeckung der menschlichen Samenfäden (Ludwig von Hammen aus Danzig – Johan Ham aus Arnheim [Holland] – Antony van Leeuwenhoek aus Delft). In: Archiv für Dermatologie und Syphilis. Band 178, Nummer 3, 1938, S. 358–372, ISSN 0365-6020.
  • 1950: Olaf W. Dietz: Die Zahl der Spermien im Ejakulat des Ziegenbockes in der Abhängigkeit zur Sexualpause. Dissertation Universität Leipzig, Veterinär-medizinische Fakultät, 15. Dezember 1950, DNB 481838465.
  • 1971: Charles A. Joël: Historical survey of research on spermatozoa from antiquity to the present. In: Fertility disturbances in men and women. Basel 1971, S. 3–43.
  • 1974: Stephan Schulte-Wrede: Raster-Elektronenmikroskopie von Spermien des Hausschafs „Ovis ammon aries L.“ Dissertation Universität München 1974, DNB 780784022 (Aus: Zeitschrift für Zellforschung und mikroskopische Anatomie, Nr. 134, 1972, ISSN 0340-0336, S. 105-127, zusammen mit Rudolf Wetzstein).
  • 1983: Ulrich Wirth: Spermien und Spermatogenese bei Nematoden und die Bedeutung der Spermien für die Phylogenetik der Metazoen. Dissertation Universität Freiburg im Breisgau 1983, DNB 840435703.
  • 1990: Heike Rauhaus: Untersuchungen zur Morphologie und Lebend-Tot-Färbung von Spermien einiger Haustierarten. Dissertation Universität München 1990, DNB 901541443.
  • 1995: Dirk Schulze Bertelsbeck: Die Bedeutung von Spermienantikörpern in Serum und auf Spermien für die Diagnose der immunologisch bedingten Infertilität. Dissertation Universität Münster (Westfalen) 1995, DNB 946147442.
  • 1996: Manuela Quandt: Inhibition und Stimulation der Spermienmigration im in vitro Spermien-Mukus-Interaktionsmodell. Dissertation Universität Heidelberg 1996, DNB 949085073.
  • 1996: Stefan Hans Uhlich: Vergleich von Spermien nach Präparation mit Glaswollfiltration oder Percoll-Dichtegradientenzentrifugation: eine elektronenmikroskopische Untersuchung. Dissertation Universität Ulm 1996, DNB 949658227.
  • 1999: World Health Organization (Hrsg.): WHO-Laborhandbuch zur Untersuchung des menschlichen Ejakulates und der Spermien-Zervikalschleim-Interaktion (Originaltitel: WHO Laboratory Manual for the Examination of Human Semen and Sperm Cervical Mucus Interaction, übersetzt von Eberhard Nieschlag und Susan Nieschlag in Zusammenarbeit mit Monika Bals-Pratsch). Springer, Berlin / Heidelberg / New York, NY / Barcelona / Hongkong / London / Mailand / Paris / Singapur / Tokio 1999, ISBN 3-540-66335-5.
  • 2001: Andrea Wagner: Das funktionelle Spermienreservoir im Säugetier. Charakterisierung der kohlenhydratvermittelten Vorgänge der Spermien-Oviduktbindung beim Schwein. Dissertation Tierärztliche Hochschule Hannover 2001, DNB 964080087 (online PDF, kostenfrei, 113 Seiten, 1,3 MB).
  • 2002: Brigitte Reimesch: Untersuchungen zum Einfluss von Coenzym Q10 und einer Mischung aus Coenzym Q10 und Vitamin C, in vitro, auf die Beweglichkeit der Spermien (Mikrofiche). Dissertation Universität Erlangen-Nürnberg 2002, DNB 964741318.
  • 2002: Steffen Klaus Meurer: Molekularbiologische und immunologische Charakterisierung von Chemorezeptoren in Säugetier-Spermien (= Berichte des Forschungszentrums Jülich). Forschungszentrum Jülich, Zentralbibliothek, Jülich 2002 ISSN 0944-2952 (Dissertation Universität Köln 2002).
  • 2003: Johannes Solzin: Chemotaxis von Seeigel-Spermien, kinetische Messungen intrazellulärer Botenstoffe (= Forschungszentrum Jülich: Berichte des Forschungszentrums Jülich, Band 4030). Dissertation Universität Köln 2003, DNB 968795285.
  • 2010: Britta Verena Behr: The biotechnological potential for manipulating offspring sex in the rhinoceros and the elephant, Freie Universität, Berlin 2010, ISBN 978-3-86664-702-2 (Dissertation FU Berlin 2009, Jornalnummer 3291 online PDF, kostenfrei, 126 Seiten, 3,8 MB (englisch)).

Einzelnachweise

  1. Siehe Erfolgsmodell Riesenspermium und Wettlauf der Giganten – Riesenspermien in Mikrofossilien nachgewiesen
  2. Spektrum der Wissenschaft September 2009, S. 14–16, Das uralte Erbe der Riesenspermien
  3. W. Schönfeld: Um die Entdeckung der menschlichen Samenfäden (Ludwig von Hammen aus Danzig – Johan Ham aus Arnheim [Holland] – Antony van Leeuwenhoek aus Delft). In: Archives of Dermatological Research. Band 178, Nummer 3, 1938, S. 358–372, DOI:10.1007/BF02061155.
  4. Observationes D. Anthonii Lewenhoeck, de Natis è semine genitali Animalculis. In: Philosophical Transactions of the Royal Society of London. Vol. 12, 1677, S. 1040–1046. doi:10.1098/rstl.1677.0068 (Volltext)
  5. Hans Fischer: Die Geschichte der Zeugung- und Entwicklungstheorien im 17. Jahrhundert. Gesnerus 2 (2): 49-80. doi:10.5169/seals-520562
  6. zitiert in Karl Friedrich Burdach: Die Physiologie als Erfahrungswissenschaft. Bd. 1, Leipzig 1826, S. 90, (vgl. Th. Schmuck: Baltische Genesis. Die Grundlegung der modernen Embryologie. Aachen 2009, S. 182).
  7. M. Barry: Spermatozoa Observed within the Mammiferous Ovum. In: Philosophical Transactions of the Royal Society of London. 133, 1843, S. 33–33, doi:10.1098/rstl.1843.0005.
  8. Eisenbach M & Giojalas LC, Nature Reviews Molecular Cell Biology, 2006
  9. Brenker et al., EMBO J, 2012
  10. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science: 299: 2054–2058
  11. Brenker et al., EMBO J, 2012
  12. Spehr et al., Science, 2003
  13. Luis Alvarez, Luru Dai, Benjamin M. Friedrich, Nachiket D. Kashikar, Ingo Gregor, René Pascal, U. Benjamin Kaupp: The rate of change in Ca2+ concentration controls sperm chemotaxis. J Cell Biol 196 (2012), doi:10.1083/jcb.201106096
  14. Mitch Leslie: As the sperm turns. J Cell Biol 196 (2012), doi:10.1083/jcb.1965iti3
  15. Eisenbach M & Giojalas LC, Nature Reviews Molecular Biology, 2006
  16. Len Fisher: Reise zum Mittelpunkt des Frühstückseis. Lübbe, 2007, ISBN 3404772180
  17. Vergleiche: Renate Lüllmann-Rauch: Histologie. Stuttgart, New York 2003, S. 404.
  18. http://www.maennerberatung.de/sperma.htm
  19. Vergleiche: Sarah Gruber: Gynäkologie und Geburtshilfe. München und Jena 2007, S. 72.
  20. Vergleiche: Renate Lüllmann-Rauch: Histologie. Stuttgart, New York 2003, S. 416 ff.
  21. Wolfgang Gerlach: Das Problem des weiblichen Samens in der antiken und mittelalterlichen Medizin. In: Sudhoffs Archiv 30, 1938, S. 177–193.
  22. Bernhard Kytzler, Lutz Redemund, Nikolaus Eberl: Unser tägliches Griechisch. Lexikon des griechischen Spracherbes. 3. Aufl., Philipp von Zabern, Mainz 2007, ISBN 978-3-8053-2816-6.

Weblinks

Wiktionary: Spermium – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen